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Participatory budgeting is an emerging and significant field where social choice theory can be applied. This
process aggregates individual preferences to decide on the allocation of public funds. Stability properties
are crucial for assessing the outcomes of participatory budgeting. In this survey, we focus on the stability
concept of core within the context of participatory budgeting. We briefly summarize the key findings from
our recent research on three aspects of this topic: algorithms for finding a constant approximation to the
core in participatory budgeting [Munagala et al., 2022b]; auditing mechanisms for core stability [Munagala
et al., 2022a]; and core stability under allocation constraints [Mavrov et al., 2023]. Finally, we introduce new
directions and open problems that have arisen from these studies.
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1 INTRODUCTION
Consider a scenario where a city is deciding how to spend all the taxes collected from its residents.
There are many different candidate public projects to fund. The project can vary in their costs,
and different residents may have different ideas on how to spend the taxes. For instance, families
with children may prefer a public school or a children’s hospital, while others may prefer a park;
residents with different locations are more likely to prefer projects near their living areas. The
policymaker needs to aggregate these preferences of the residents. The problem of solving such
aggregation and deciding which projects to fund is called participatory budgeting. According to the
New York City Council, “there are more than 3,000 participatory budgeting processes around the
world, most at the municipal level” [PB2, 2023]. This indicates that participatory budgeting plays a
critical role in city construction.
In a participatory budgeting problem, we denote the budget limit (i.e. the taxes collected) by

𝑏. There is a list of 𝑚 projects (forming a set 𝐶), where each 𝑗 ∈ 𝐶 is associated with a cost 𝑠 𝑗 .
The city needs to select a subset𝑊 of these projects whose total cost is at most the budget, that
is,

∑
𝑗∈𝑊 𝑠 𝑗 ≤ 𝑏. There are 𝑛 residents or voters (forming a set 𝑉 ) in the city, and each voter 𝑖 has

preferences on how the city should spend its budget, denoted by a utility function 𝑢𝑖 on project
subsets. The goal is, after all the residents submit their preferences on the projects, to find such a
subset𝑊 that fairly aggregates the preferences.

1.1 Committee Selection and Multiwinner Elections
In the terminology of social choice, the participatory budgeting problem can be viewed as the
committee selection problem with weighted candidates. Each project corresponds to a candidate in
an election, and each resident corresponds to a voter attending the election. There are𝑚 candidates
and 𝑛 voters. Each candidate 𝑗 has size 𝑠 𝑗 . The subset of candidates we finally select is called the
committee, and we want to select a committee𝑊 within the committee size constraint 𝑏.
When the sizes of all the candidates are identical, this problem is reduced to the multiwinner

election problem [Aziz et al., 2019, Brams et al., 2007, Brandt et al., 2016, Chamberlin and Courant,
1983, Endriss, 2017, Monroe, 1995, Thiele, 1895]. This problem is central to the social choice and
has attracted attention for over a century. In this problem, there is a set 𝑉 of 𝑛 voters and a set
𝐶 of𝑚 candidates, out of which a committee of 𝑘 candidates needs to be chosen. Voters express
preferences over subsets of candidates, by utility functions {𝑢𝑖 }𝑖∈[𝑛] where each 𝑢𝑖 is a set function
of the selected candidates. There are many specifics of multiwinner elections by adding constraints
on the utility functions. For example, the approval election is the case where each voter 𝑖 has an
approval set 𝐴𝑖 ⊂ 𝐶 and 𝑢𝑖 (𝑊 ) = |𝐴𝑖 ∩𝑊 |.
For simplicity, even in participatory budgeting, we use the committee selection terminologies

⟨candidates, voters, committee, sizes⟩ to represent ⟨projects, residents, funded projects, costs⟩ re-
spectively in this paper.

1.2 Fairness via Core and Its Multiplicative Approximation
Recall that there are 𝑛 voters forming a set 𝑉 , and𝑚 candidates forming a set 𝐶 , where candidate 𝑗
has size 𝑠 𝑗 . We need to choose a subset𝑊 of candidates with total size at most𝑏 (that is,

∑
𝑗∈𝑂 𝑠 𝑗 ≤ 𝑏).

Denote the utility of voter 𝑖 for any committee 𝑇 ⊆ 𝐶 by a utility function 𝑢𝑖 (𝑇 ). We will basically
assume this function is non-negative and monotone, with 𝑢𝑖 (∅) = 0.
A naive approach to solving the participatory budgeting problem is to maximize the social

welfare, that is, select a committee 𝑊 such that
∑𝑛

𝑖=1 𝑢𝑖 (𝑊 ) is maximized. Such a solution is
typically considered unreasonable, in the sense that it often under-represents the utility of some
minority groups. Consider the following approval election:
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Example 1.1. There are 4 unit-size candidates {𝑎, 𝑏, 𝑐, 𝑑} and 101 voters. 𝑏 = 3, i.e. we can only
choose 3 out of the 4 candidates. The first group of 51 voters have approval set {𝑎, 𝑏} and the second
group of the rest 50 candidates have approval set {𝑐, 𝑑}.

The 2-candidate committee that maximizes
∑𝑛

𝑖=1 𝑢𝑖 (𝑊 ) is {𝑎, 𝑏}. However, one can imagine that
the second group is unhappy since they occupy nearly half the population, but they do not get
even 1 candidate (one-third of the size limit) selected in their approval set. These instances raise
the thoughts of including proportional representation as a fairness constraint in the selection of
committees. In the recent decade, different extensions of proportional representation have been
developed and widely studied [Aziz et al., 2017, 2018, Brill et al., 2017, Fernández et al., 2017, Monroe,
1995, Sánchez-Fernández et al., 2017, Skowron et al., 2015].

While there are copious notions of fairness for committee selection, the core is a classic and
influential one among them. This idea has existed for more than a century [Droop, 1881, Lindahl,
1958, Thiele, 1895], and serves as one of the strongest notions of proportional representation.
Towards defining this concept, imagine we split the size 𝑏 among all the voters so that each voter
has an endowment of 𝑏

𝑛
that they can use to “buy” candidates. A candidate of size 𝑠 𝑗 requires an

endowment of 𝑠 𝑗 to “buy”. A committee𝑊 ⊆ 𝐶 with total size at most 𝑏 is said to be in the core, if no
subset 𝑆 of voters can deviate and purchase another committee𝑇 ⊆ 𝐶 by pooling their endowments,
so that each voter in 𝑆 prefers the new committee 𝑇 to the original one𝑊 . Note that the total
endowment of 𝑆 is |𝑆 | · 𝑏

𝑛
, so that this set of voters can buy a committee 𝑇 of size at most |𝑆 | · 𝑏

𝑛
.

Formally,

Definition 1.2 (Core). A committee𝑊 is in the core if there is no 𝑆 ⊆ 𝑉 and committee 𝑇 ⊆ 𝐶
with

∑
𝑗∈𝑇 𝑠 𝑗 ≤ |𝑆 |

𝑛
· 𝑏, such that 𝑢𝑖 (𝑇 ) > 𝑢𝑖 (𝑊 ) for every 𝑖 ∈ 𝑆 .

The core has a “fair taxation” interpretation [Foley, 1970, Lindahl, 1958]. The quantity 𝑏
𝑛
can be

thought of as the tax contribution of a voter, and a committee in the core has the property that
no sub-group of voters could have spent their share of tax money in a way that all of them were
better off. As such it subsumes notions of fairness such as Pareto-optimality, proportionality, and
various forms of justified representation [Aziz et al., 2017, 2018, Fernández et al., 2017] that have
been extensively studied in multiwinner election and fairness literature.

Despite the satisfying properties of the core, its strength is also its limitation: Even in the simple
setting of unit sizes, integer budget, and additive utilities (the so-called approval-set setting with
general utilities), the core can be empty. (See for example, [Fain et al., 2018].)
A natural approach to circumvent this problem is to show the existence of a committee that

multiplicatively approximates the core. We define the 𝛼-core as follows.

Definition 1.3 (𝛼-Core). A committee𝑊 is in the 𝛼-core if there is no 𝑆 ⊆ 𝑉 and 𝑇 ⊆ 𝐶 with∑
𝑗∈𝑇 𝑠 𝑗 ≤ |𝑆 |

𝑛
·𝑏, such that 𝑢𝑖 (𝑇 ) > 𝛼 ·𝑢𝑖 (𝑊 ∪ {𝑞}) for every 𝑖 ∈ 𝑆 and 𝑞 ∈ 𝐶 . We call the candidate

𝑞 an additament.

Note that we introduce the additament in the definition, since no multiplicative approximation is
possible without it even in the setting with unit candidate sizes and additive utilities. This follows
from examples in previous work [Cheng et al., 2020, Fain et al., 2018]. The idea of a bicriteria
(multiplicative and additive) approximation to utilities was first presented in [Fain et al., 2018]. The
work of [Peters et al., 2021] presents an almost identical definition as Definition 1.3, except that the
additament 𝑞 must come from the set𝑇 . This makes their definition more restrictive and the 𝛼-core
smaller. They show that when utilities are additive, an 𝑂

(
log 𝑢max

𝑢min

)
-core solution not only exists,

but can also be computed in polynomial time, where 𝑢max and 𝑢min are the largest and smallest
non-zero utilities any voter has for any feasible committee.
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1.3 Utility Functions
Each voter 𝑖 is associated with a non-negative function 𝑢𝑖 (·), where 𝑢𝑖 (𝑇 ) captures their utility for
committee 𝑇 ⊆ 𝐶 . We assume these functions satisfy two properties:

• Monotonicity. 𝑢𝑖 (𝑇 ) ≤ 𝑢𝑖 (𝑇 ∪ { 𝑗}) for all 𝑇 ⊆ 𝐶 and 𝑗 ∈ 𝐴, with 𝑢𝑖 (∅) = 0.
• 1-Lipschitz. 𝑢𝑖 (𝑇 ) − 𝑢𝑖 (𝑇 \ { 𝑗}) ≤ 1 for all 𝑇 ⊆ 𝐶 and 𝑗 ∈ 𝐴.

Note that the core is scale-invariant, so that the definition is robust to scaling utility functions
differently for different voters. Therefore, the 1-Lipschitz condition on the utilities is w.l.o.g. If there
are no other constraints on the utilities, we call them general. In this paper, we will consider several
natural utility functions in increasing order of generality:

• Approval. Each voter 𝑖 has an approval set 𝐴𝑖 ⊆ 𝐶 . Their utility for 𝑇 is 𝑢𝑖 (𝑇 ) = |𝑇 ∩𝐴𝑖 |.
• Additive. Each voter 𝑖 has utility 𝑢𝑖 𝑗 for 𝑗 ∈ 𝐶 . For committee 𝑇 , 𝑢𝑖 (𝑇 ) =

∑
𝑗∈𝑇 𝑢𝑖 𝑗 .

• Submodular. For any 𝑇1 ⊆ 𝑇2 and 𝑗 ∈ 𝑇1:

𝑢𝑖 (𝑇1) − 𝑢𝑖 (𝑇1 \ { 𝑗}) ≥ 𝑢𝑖 (𝑇2) − 𝑢𝑖 (𝑇2 \ { 𝑗}).

• XOS [Feige, 2006, Lehmann et al., 2001]: For additive functions {𝑢𝑖 𝑗𝑞, 𝑗 ∈ 𝐶,𝑞 ∈ [ℓ]},

𝑢𝑖 (𝑇 ) =
ℓmax

𝑞=1

∑︁
𝑗∈𝑇

𝑢𝑖 𝑗𝑞 .

• 𝛽-self bounding [Boucheron et al., 2009]. Given constant 𝛽 ≥ 1, for each 𝑇 ⊆ 𝐶:∑︁
𝑗∈𝑇

(𝑢𝑖 (𝑇 ) − 𝑢𝑖 (𝑇 \ { 𝑗})) ≤ 𝛽 · 𝑢𝑖 (𝑇 ).

Wenote that approval utilities are a special case of additive, which are a special case of submodular,
which are a special case of XOS, which are a special case of 1-self bounding [Boucheron et al., 2009].
Note that though XOS functions are sub-additive, in general, 𝛽-self bounding functions need not be
sub-additive, where sub-additivity means that 𝑢𝑖 (𝐴 ∪ 𝐵) ≤ 𝑢𝑖 (𝐴) + 𝑢𝑖 (𝐵) for all 𝐴, 𝐵 ⊆ 𝐶 .

To motivate these classes, approval utilities capture the classical setting of “approval ballots” in
elections, and have a rich history in social choice. See the recent book [Lackner and Skowron, 2023]
for a comprehensive survey of this topic. Submodular functions capture diminishing returns from
choosing additional candidates, and have been widely studied as a discrete analog of concavity.

XOS functions can be motivated in settings where individuals vote on behalf of a family. Consider
Participatory Budgeting, where the projects either pertain to children or adults, and are additive
within each group. An individual voting on behalf of themselves and their children may feel their
taxes have been well spent if the maximum utility received by anyone in their family is large.

Similarly, in graph theory, the maximum size of a subgraph for any hereditary property is XOS
(see [Dubhashi and Panconesi, 2009]). Such functions can capture diversity or harmony in the
committee. Consider approval utilities with a twist: There is a graph𝐺 on candidates, where an
edge captures “too similar”, say in terms of opinion. Given committee𝑊 and voter 𝑖’s approval set
𝐴𝑖 , their utility is the maximum independent set of the sub-graph induced on𝑊 ∩𝐴𝑖 . This captures
opinion diversity in the subset of approved candidates that are on the committee, and is XOS since
independent set is hereditary. On the other hand, if the graph edges model a social network and are
interpreted as “gets along with”, the voter’s utility may be the maximum size of a clique in𝑊 ∩𝐴𝑖 ,
which corresponds to the maximum sub-committee among approved candidates that all get along.
This captures “harmony” in the committee from the voter’s perspective, and is XOS as well.

If instead of defining the utility from diversity (resp. harmony) as the size of the maximum
independent set (resp. max clique), this is defined as 𝑢𝑖 (𝑊 ) = log𝑁 (𝐴𝑖 ∩𝑊 ), where 𝑁 (𝐴𝑖 ∩𝑊 ) is
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the number of independent sets (resp. cliques) in the subgraph on𝑊 ∩𝐴𝑖 , such utilities are called
“combinatorial entropies” and remain 1-self bounding [Boucheron et al., 2009].

2 ALGORITHMS FOR CONSTANT APPROXIMATION TO THE CORE
In this section, we summarize the first line of work – how we achieve a constant approximation
to the core under different utility functions. In Section 2.1, we introduce and analyze some basic
committee selection rules. In Section 2.2, we list our results on the constant approximate core
solution. Moreover, we briefly discuss how the basic committee selection rules are related to our
algorithms, and how we extend these rules for more general settings.

2.1 Proportional Approval Voting and Its Generalizations
Proportional Approval Voting (PAV). The PAV rule is a classical committee selection rule for

multiwinner elections with approval utilities, dating back a century to Thiele [Thiele, 1895]. This
rule plays an important role in our analysis and is closely related to the core stability. For integer
𝑥 ≥ 1, let 𝐻 (𝑥) = ∑𝑥

𝑦=1
1
𝑦
denote the harmonic sum till 𝑥 . We define 𝐻 (0) = 0. The PAV score of a

committee𝑊 is defined as:

pav(𝑊 ) =
𝑛∑︁
𝑖=1

𝐻 (𝑢𝑖 (𝑊 )). (1)

Consider the following algorithm that we will term Local:
Local. Given the current committee𝑊 of size 𝑘 , if there is a 𝑗1 ∈𝑊 and 𝑗2 ∉𝑊 such
that pav(𝑊 ∪ { 𝑗2} \ { 𝑗1}) > pav(𝑊 ), then replace𝑊 by𝑊 ∪ { 𝑗2} \ { 𝑗1}.

When this process terminates, we have a local optimum for the pav score. The work of [Aziz
et al., 2017, Fernández et al., 2017] shows that any such local optimum satisfies a special case of the
core termed extended justified representation (EJR), where the blocking coalitions satisfy certain
cohesiveness conditions. More recently and more relevant to us, it was shown by [Peters and
Skowron, 2020] that any such local optimum also lies in the 2-approximate core:

Theorem 2.1 (2-core for approval utilities [Peters and Skowron, 2020]). For approval
utilities, Local finds a committee in the 2-approximate core.

Further, they show this result is tight – any rule that maximizes the sum of symmetric concave
functions over voters’ utilities cannot do better than a 2-approximation. (As an aside, it is an
open question whether a 1-approximate core exists for this setting via a rule not based on scoring
functions.)

Generalizations of PAV. In this paper, we will consider modifications of the PAV rule to allow
for real-valued utility functions. We first define Smooth Nash Welfare, which has been previously
studied in [Fain et al., 2018, Fluschnik et al., 2019]. The score of committee𝑊 is defined as:

snw(𝑊 ) =
𝑛∑︁
𝑖=1

ln(1 + 𝑢𝑖 (𝑊 )). (2)

The second generalization is new, and we term it Generalized PAV. For 𝑥 ≥ 0, we define

Φ(𝑥) = 𝐻 (⌊𝑥⌋) + 𝑥 − ⌊𝑥⌋
⌈𝑥⌉ .

Then the score of committee𝑊 is defined as:

gpav(𝑊 ) =
𝑛∑︁
𝑖=1

Φ(𝑢𝑖 (𝑊 )) . (3)
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These rules are very similar to each other. The gpav rule reduces to PAV for approval utilities, and
satisfies properties like EJR there. On the other hand, the snw rule is analytically simpler and leads
to somewhat better approximation bounds in our analysis.
The argument in [Peters and Skowron, 2020] can be extended to show that a local optimum

for snw lies in the 2-approximate core with submodular utilities. However, submodular utilities
represents the limit to which Local lies in the approximate core. Once we consider very simple XOS
utilities, the following example that local optima to snw or gpav need not lie in any 𝛾-approximate
core for constant 𝛾 .

Example 2.2. There are𝑚 = 2𝑘 candidates and 𝑛 = 𝑘 voters, where 𝑘 is the committee size. There
are two sets of 𝑘 candidates each: 𝐴 = {𝑎1, . . . , 𝑎𝑘 }, and 𝐵 = {𝑏1, . . . , 𝑏𝑘 }. The utility function of
voter 𝑖 is as follows: For set 𝑇 , 𝑢𝑖 (𝑇 ) = max( |𝑇 ∩ 𝐵 |, |𝑇 ∩ {𝑎𝑖 }|).

Since the utility function 𝑢𝑖 is the maximum of two additive functions, it is XOS. Consider the
committee𝑊 = 𝐴. If any 𝑎𝑖 is replaced by any 𝑏 𝑗 , the utilities of all voters are unchanged at value
1. Therefore,𝑊 = 𝐴 is a local optimum to snw (resp. gpav). However, all voters can together
choose blocking committee 𝐵, which gives each of them a factor 𝑘 larger utility. Therefore, the
local optimum 𝐴 does not lie in the 𝛾-core for any constant 𝛾 .

Improved Analysis of pav for Large Coalitions. In the multiwinner election problem with additive
utilities, if we use the Local rule with the pav score, Peters and Skowron [2020] show an approxima-
tion factor of 2, which is tight. However, this tightness holds only for small coalitions of voters. This
begs the question: Is there an improved analysis of the Local rule for any coalition size? We answer
this in the affirmative: We show that as the coalition size increases, the approximation factor of the
local optimum to gpav approaches 1. In particular, this shows Local is weakly Pareto-optimal. In
addition, our analysis holds for general additive utilities (and not just approval), which shows the
desirability of gpav as a scoring rule.

Theorem 2.3. For multiwinner elections with additive utilities (and no allocation constraints),
suppose only coalitions of size at least 𝛼𝑛 are allowed to deviate, where 𝛼 ∈ [0, 1]. Then any local
optimum to gpav lies in the 2 − 𝛼 approximate core. Further, this bound is tight for such local optima.

2.2 Finding a Constant Approximate Core Solution in Participatory Budgeting
We show the existence of an 𝑂 (1)-core in Participatory Budgeting when the utility functions of
the voters are monotone and submodular in [Munagala et al., 2022b]. This is an improvement over
the work of Peters et al. [2021] mentioned above, which presents a logarithmic approximation for
the restricted case of additive utilities.

Theorem 2.4 (PB, Submodular Utilities, Polytime). For monotone submodular utilities, a
67.37-core is always non-empty. One such solution can be computed in polynomial time.

We also improve the constant for the well-studied special case of additive utilities:

Theorem 2.5 (PB, Additive Utilities, existence). For additive utilities, a 9.27-core is always
non-empty.

Unlike Theorem 2.4, we do not know how to implement the algorithm in Theorem 2.5 in
polynomial time. We remark that the previous two results can be combined to show that a 15.2-core
solution for additive utilities can be computed in polynomial time.

Theorem 2.6 (PB, Additive Utilities, Polytime). For additive utilities, a 15.2-core is always can
be computed in polynomial time.
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Our overall algorithm procedure is to apply the multilinear extension to extend the utility
function to fractional committees. Then we use a continuous time local search procedure similar
to Local for the Nash Welfare objective to find a fractional solution, such that it almost lies in
the 2-approximate fractional core. We subsequently round it iteratively to find a solution in the
approximate integer core.

Lower Bounds. The next natural question is whether our results can be extended to arbitrary
monotone utilities. We show that this is not possible. We present an example to show that an
𝑂 (1)-core (or even any 𝑓 (𝑛,𝑚)-core where 𝑛 is the number of voters and 𝑚 is the number of
candidates) may not exist for general monotone utilities.

Theorem 2.7 (General Utilities, Lower Bound). For general monotone utilities, for any function
𝜑 : Z+ × Z+ → R+, a 𝜑 (𝑛,𝑚)-core can be empty.

We also show that the case of submodular utilities does need a multiplicative approximation to
the core, and the 1-core can be empty. This justifies the form of Theorem 2.4 that involves both a
multiplicative approximation and an additament.
Theorem 2.8 (Submodular Utilities, Lower Bound). For monotone submodular utilities, a

1.015-core can be empty.

In Mavrov et al. [2023], we relax restriction on utility function from submodular to more general
functions. We present an existence proof of a 𝑒𝑂 (𝛽 ) -core for 𝛽-self bounding utilities, after slightly
weakening the definition of the additament.

Theorem 2.9 (𝛽-Self bounding Utilities). For the Participatory Budgeting problem with 𝛽-self
bounding utilities (where 𝛽 ≥ 1 is an integer) and no allocation constraints, a 𝑐-approximate core is
always non-empty, where 𝑐 = 𝑒𝑂 (𝛽 ) .

Finally, we complement this by showing that the exponential dependence of the approximation
factor on 𝛽 in Theorem 2.9 is unavoidable:
Theorem 2.10 (𝛽-Self bounding Utilities, Lower Bound). For multiwinner elections with

𝛽-self bounding functions (𝛽 ≥ 5) and no allocation constraints, the 𝑐-approximate core can be empty
for 𝑐 = 1

2
( 4
3
)𝛽/2 − 𝑜 (1).

3 APPROXIMATION ON ENDOWMENT AND AUDITING
In this section, we first present an alternate definition of approximate core stability and introduce
the problem of committee auditing. Next, in Section 3.2, we briefly list our results for auditing the
core and other stability notions inspired by core auditing.

Approximate Endowment Core. Since the statement in the core definition is composite, ways of
relaxing the definition can vary. Other than the previous approximate notion of 𝛼-core, people
have defined an alternate endowment version of approximation. Intuitively, instead of relaxing
the definition by forcing the deviating subset to get more utility, the endowment approximation
restricts their “power” to form a new committee. The approximation ratio reflects how much the
budget shrinks if a voter subset is going to deviate from the current committee. The definition is as
follows:
Definition 3.1 (𝜃 -Endowment Core). For 𝜃 ≤ 1, a committee𝑊 of size at most 𝑘 lies in the 𝜃 -

endowment core if for all 𝑆 ⊆ [𝑛], there is no deviating committee 𝑇 with size at most 𝜃 · |𝑆 | · 𝑘
𝑛
, such

that for all 𝑖 ∈ 𝑆 , we have𝑈𝑖 (𝑇 ) > 𝑈𝑖 (𝑊 ).
It is known [Jiang et al., 2020] that a 1

32 -endowment core solution always exists for very general
utility functions of the voters.
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3.1 Auditing for Endowment Core Stability
Though the existence of approximate endowment core solutions is a strong positive result, the
algorithms for finding such solutions are often complex. Indeed, even in settings where the core is
known to be always non-empty, for instance when candidates can be chosen fractionally [Foley,
1970], the non-emptiness is an existence result that needs an expensive fixed point computation. On
the other hand, in practice, what are implemented are typically the simplest and most explainable
social choice methods such as Single Transferable Vote (STV). Therefore, from the perspective of a
societal decision maker, such as a civic body running a participatory budgeting election, it becomes
important to answer the following auditing question for any given election:

Given a committee𝑊 of size at most 𝑘 found by some implemented preference aggre-
gation method, how close is it to being core stable, i.e., what is the smallest value of 𝜃𝑐
such that𝑊 does not lie in the 𝜃𝑐 -endowment core for that instance?

Note that if a committee𝑊 lies in the core, then 𝜃𝑐 > 1, else 𝜃𝑐 ≤ 1. Such an auditing question is
useful even if the decision maker themselves is not sensitive to fairness because it allows for the
review of implemented decision rules via a third party or government agency. Further, the set of
deviating voters that correspond to the 𝜃𝑐-approximation yields a demographic that is unhappy
with the current outcome, and this can be analyzed further by policy makers. We term the above
question as the core auditing problem.

3.2 Hardness and Approximation Algorithm for Core Auditing
In [Munagala et al., 2022a], we show that for Approval Elections, the value of 𝜃𝑐 in the core
auditing problem is NP-Hard to approximate to a constant factor:

Theorem 3.2 (Hardness of Auditing). For any constant 𝛾 > 0, approximating 𝜃𝑐 to within a
factor of 1 + 1

𝑒
− 𝛾 is NP-Hard.

Furthermore, we show that such APX-Hardness persists even when voters are allowed to choose
a fractional deviating committee, with a proper definition of the approximate core stability for
fractional committees.

Definition 3.3. For 𝜃 ≤ 1 and constant 𝜂 ∈ (0, 1], a committee ®𝑥 ∈ [0, 1]𝑚 with
∑

𝑗 𝑠 𝑗𝑥 𝑗 ≤ 𝑘 lies in
the (𝜃, 𝜂)-approximate fractional core if for all 𝑆 ⊆ [𝑛], there is no deviating committee ®𝑦 ∈ [0, 1]𝑚
with

∑
𝑗 𝑠 𝑗𝑦 𝑗 ≤ 𝜃 · |𝑆 | · 𝑘𝑛 , such that for all 𝑖 ∈ 𝑆 , we have𝑈𝑖 ( ®𝑦) ≥ 𝑈𝑖 ( ®𝑥) + 𝜂.

Theorem 3.4 (Hardness of Auditing for fractional committee). For any 0 < 𝜂 ≤ 1 and any
𝛾 > 0, distinguishing instances that do not lie in the (𝜃𝑐 , 𝜂)-approximate fractional core from those
that lie in the (𝜃𝑐 (1.1839 − 𝛾), 𝜂)-approximate fractional core is NP-Hard.

On the positive side, we design an algorithm for computing an 𝑂 (min(log𝑚, log𝑛)) approxima-
tion for the value 𝜃𝑐 of a given committee:

Theorem 3.5. Given a committee 𝑊 of size at most 𝑘 , its 𝜃𝑐 value can be computed within
𝑂 (min(log𝑚, log𝑛)) factor in polynomial time, where𝑚,𝑛 are the total number of candidates and
voters respectively.

The idea of the algorithm is via linear program rounding. Our program (and indeed, our auditing
question itself) is an interesting generalization of the densest subgraph problem [Charikar, 2000],
where the goal is to choose a subgraph with maximum average degree. Given a graph, treat voters
as edges and candidates as vertices that are approved by the incident edges; further assume any
voter needs utility 2 (that is, both end-points) in a feasible deviation. Then, the value of 𝜃𝑐 is
precisely the density of the densest subgraph (to scaling). We combine ideas from the rounding for
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densest subgraph (where the rounding produces the integer optimum without approximation) with
that from maximum coverage to design our rounding scheme. We further show that our linear
program has an integrality gap of Ω(min(log𝑚, log𝑛)), showing that we cannot do any better
against an LP lower bound. We also extend this to general candidate sizes and arbitrary additive
utilities via knapsack cover inequalities, leading to an 𝑂 (min(log𝑚, log𝑛)) approximation factor
in participatory budgeting core auditing.

Deciding Core Stability. A problem closely related to the auditing problem is to decide if a
committee𝑊 does not lie in the core – this is equivalent to deciding whether its 𝜃𝑐 ≤ 1. The
problem is known to be NP-hard in Brill et al. [2020]. We show that this decision problem is
NP-Hard even in a “constant degree” setting:

Theorem 3.6 (Hardness of Deciding the Core, Constant Approval Set Size). Deciding
whether a committee𝑊 does not lie in the core (that is, deciding whether its 𝜃𝑐 ≤ 1) is NP-Hard when
each voter approves at most 6 candidates (that is, |𝐴𝑖 | ≤ 6 for all voters 𝑖 ∈ [𝑛]), and each candidate
lies in at most 2 of the sets 𝐴𝑖 .

4 ELECTIONS WITH ALLOCATION CONSTRAINTS
Observing the common fact that real-world elections have restrictions on the selected committee,
we further focus on the practically relevant aspect of having exogenous constraints on a feasible
committee. We assume there is a set P of feasible committees (each of size at most 𝑘), and the
chosen committee𝑊 must belong to this set. For simplicity, we only focus on unit-size candidates,
i.e., the committee selection problem.

Several types of constraints could arise in practice, and we now give some examples.
• Matroid Constraint.Multiwinner elections with a single matroid constraint were previously
considered in [Fain et al., 2018]. Here, P consists of all independent sets of size at most 𝑘 in
the matroidM. The simplest example of matroids is a partition matroid constraint. The set𝐶
of candidates are partitioned into disjoint groups 𝐺1,𝐺2, . . . ,𝐺ℓ , and any feasible committee
of size 𝑘 can choose at most 𝑘𝑖 candidates from group 𝐺𝑖 , where the 𝑘𝑖 are exogenously
specified. As an example, the groups could represent geographic regions the candidates hail
from, or the type of project in Participatory Budgeting.

• Packing Constraints. Here, there are multiple downward-closed constraints, meaning that
any sub-committee of a feasible committee is also feasible. For instance, imagine candidates
belong to multiple overlapping groups (different races, genders, income levels), and there is a
constraint on the number of candidates that can be chosen from any group.

• Independent Set. This is a special case of packing constraints. We have a graph over the candi-
dates, with the constraint that a feasible committee is an independent set in this graph. This
captures pairs of candidates who have conflicts or pairs of projects that cannot simultaneously
be funded. These projects cannot be simultaneously put on the committee.

• Rooney Rule. Going beyond packing constraints, we can have minimum (or covering) re-
quirements. For instance, if we seek diversity in the selected candidates, we could impose
minimum numbers on candidates chosen from certain groups. As an example, a committee
needs to include at least 𝑥 female candidates, or a Participatory Budgeting outcome needs to
include at least one public safety project and at least two child-friendly projects.

We consider the most general model where the set P of feasible committees of size at most 𝑘
can be an arbitrary subset of 2𝐶 . Though it is tempting to use Definition 1.3 while restricting the
blocking committee 𝑇 to also lie within P, the 𝛾-core may be empty for any constant 𝛾 even for a
single packing (or partition matroid) constraint.
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4.1 Restrained Core and Its Multiplicative Approximation
We use the perspective of social planner protecting the rights of the voters who do not deviate by
providing them first their “fair share” of the budget. This leads to our first contribution, defining the
restrained core. To understand this definition, given allocation𝑊 ∈ P, suppose subset 𝑆 of voters
deviates with its endowment 𝑘 ′ = ⌊ |𝑆 |

𝑛
𝑘⌋. Then, 𝑆 ′ = 𝑉 \ 𝑆 is also entitled to 𝑘 − 𝑘 ′ candidates. The

social planner picks at most 𝑘 −𝑘 ′ candidates from the current allocation𝑊 for 𝑆 ′. This leaves space
for 𝑆 to pick 𝑘 ′ candidates from 𝐶 subject to the feasibility constraint. See Fig. 1 for an illustration
of the deviation process. Formally, we define the restrained core as follows:

Definition 4.1 (𝛾-approximate restrained core). Given a set P of committees of size at most 𝑘 , a
committee �̂� is said to be 𝑞-completable if there exists𝑊 ′′ with |𝑊 ′′ | ≤ 𝑞 such that𝑊 ′′ ∪ �̂� ∈ P.
A committee𝑊 ∈ P lies in the 𝛾-approximate restrained core if there is no constraint-feasible

𝛾-blocking coalition 𝑆 ⊆ 𝑉 of voters. Such a blocking coalition with endowment 𝑘 ′ = ⌊ |𝑆 |
𝑛
𝑘⌋ satisfies

the following: For all 𝑘 ′-completable committees �̂� ⊆𝑊 with |�̂� | ≤ 𝑘 − 𝑘 ′, there exists𝑊 ′ with
|𝑊 ′ | ≤ 𝑘 ′ such that (1) 𝑇 =𝑊 ′ ∪ �̂� ∈ P, and (2) for all 𝑖 ∈ 𝑆 , it holds that 𝑢𝑖 (𝑇 ) ≥ 𝛾 · (𝑢𝑖 (𝑊 ) + 1).

W ′ Ŵ

Ŵ

WW

V \ S chooses Ŵ ⊆W

S chooses W ′ ⊆ C

T = W ′ ∪ Ŵ

Fig. 1. Illustration of the deviation process in the restrained core. The original committee is shown as𝑊 in
the first row. Assume that subset 𝑆 of voters are deviating. The rest of the voters 𝑉 \ 𝑆 chooses �̂� from𝑊

with size at most 𝑘 − 𝑘′ (the second row). Then 𝑆 chooses𝑊 ′ with at most 𝑘′ candidates (shown as red in the
third row) from 𝐶 . The final deviated committee is 𝑇 =𝑊 ′ ∪ �̂� .

We insist �̂� is 𝑘 ′-completable in order to ensure there is always some choice of𝑊 ′ for Condition
(1), which is important to make sure the condition is not vacuously false when |�̂� | < 𝑘 −𝑘 ′. Further,
note that when P is the set of all committees of size at most 𝑘 , that is, when there are no allocation
constraints, then Definition 4.1 reduces to Definition 1.3. To see this, simply note that the choice of
𝑊 ′ in Definition 4.1 is now not affected by the choice of�̂� , so that�̂� = ∅ without loss of generality.
Therefore, Definition 4.1 generalizes Definition 1.3 to constraints.

4.2 Finding an Approximate Restrained Core
Building on the definition of approximate restrained core, our main technical contribution is the
following theorem.

Theorem 4.2 (Approximate Restrained Core). For multiwinner elections with arbitrary allo-
cation constraints P and 𝛽-self bounding utility functions for 𝛽 ≥ 1, an 𝑒𝛽 -approximate restrained
core is always non-empty. As a consequence, the 𝑒𝛽 -approximate core is non-empty without allocation
constraints.
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As we mention in Section 6, though there has been prior work on core with constraints, these
either require scaling down the constraints on deviation often rendering them meaningless, or
work in very limited settings. Our Definition 4.1 and the associated Theorem 4.2 are the first results
that achieve a constant approximate core for arbitrary constraints even for approval utilities.

Since XOS utilities are 1-self bounding [Vondrák, 2010], Theorem 4.2 implies an 𝑒-approximate
restrained core for XOS utilities (and hence, for approval, additive, and submodular utilities) with
any allocation constraints, or an 𝑒-approximate core without allocation constraints (Definition 1.3).

One choice of�̂� in Definition 4.1 that yields Theorem 4.2 is to maximize the snw score for voters
not in the deviating coalition. Therefore, the social planner takes care of the complement in the
best possible fashion for any deviation, which itself can be viewed as a form of fairness.

Finally, the exponential dependence of the approximation on 𝛽 is unavoidable; see Theorem 2.10.

Algorithm. The algorithm that yields the above result is surprisingly simple:

Global: Find𝑊 ∈ P such that snw(𝑊 ) is maximized.

Note that we are not finding a local optimum, but instead computing the global optimum of
snw; indeed, when P is arbitrary, the Local algorithm may get stuck simply for lack of swaps that
preserve membership in P. Further, Example 2.2 shows Local is insufficient for XOS functions
even without any additional constraints. Our use of the global optimum necessitates an entirely
new analysis compared to prior work, and this analysis forms a key contribution.

We have therefore presented the first fairness analysis of Nash Welfare for multiwinner elections
with XOS utilities even without additional constraints. We note that compared to prior work on
welfare maximization with XOS utilities [Feige, 2006, Lehmann et al., 2001] that were based on
linear programming, our proof for snw is entirely combinatorial. This is because we only use the
self-bounding property of these functions, while welfare maximization uses the stronger property of
fractional subadditivity of XOS functions. To highlight the difference, our results hold for arbitrary
self-bounding functions, while welfare maximization results extend to sub-additive functions. These
classes are incomparable, and we do not know how to extend our results to sub-additive functions.

Finally, we note that for one voter, core stability reduces to utility maximization, which cannot
be approximated in polynomial time within sub-polynomial factors for either XOS functions (value
oracle model; [Mirrokni et al., 2008]) or independent set constraints (NP-Hardness; [Feige et al.,
1996]). Our results therefore show fairness properties for Nash Welfare even in settings where
there are no computationally efficient and fair algorithms possible via any method.

Lower Bound for Restrained Core. One may wonder if Definition 4.1 makes the problem “too easy”
so that there is always a 1-approximate (exact) restrained core. We show this is not the case even
in the presence of very simple constraints and approval utilities, via the following theorem:

Theorem 4.3 (Restrained Core, Lower Bound). For 𝑐 = 16/15−𝑜 (1), a 𝑐-approximate restrained
core can be empty even for approval utilities and a single packing or partition matroid constraint.

This lower bound complements the upper bound of 𝑒 for additive utilities (𝛽 = 1) in Theorem 4.2.
Note that in the absence of constraints, it is a long-standing open question whether a 1-approximate
(exact) core exists for approval utilities. The above theorem shows that surprisingly, even with a
single constraint, the exact (restrained) core for this setting is empty. Indeed, the theorem holds
even for a weaker version of Definition 4.1, where �̂� could be any committee of size 𝑘 − 𝑘 ′ (and
not necessarily a subset of𝑊 ) such that there exists𝑊 ′ making �̂� ∪𝑊 ′ ∈ P.
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4.3 Matroid Constraints
Consider the special case where P is the set of independent sets of a matroid. We show that the
Local rule applied to snw lies in the 2-approximate restrained core for a matroid constraint and
submodular utilities. In this setting, the Local rule swaps a candidate 𝑗 ∉𝑊 for ℓ ∈𝑊 as long as
the committee remains a basis of the matroid and the snw score strictly improves. Note that unlike
Global, this algorithm is computationally efficient. The proof is built on [Peters and Skowron,
2020], who show a 2-approximate core for the special case of pav with approval utilities and no
constraints. They also show that the factor of 2 is tight for the pav rule without constraints, and
the same tightness will hold for our setting.

4.4 Other Fairness notions with allocation constraints
We next consider the notion of extended justified representation (EJR) [Aziz et al., 2017], which is
a weakening of the core for approval utilities. This is exactly satisfied by Local applied to pav
rule in the absence of constraints. We define a generalization of EJR to the setting with constraints
similar to the way to define restrained core. We call this definition restrained EJR:

Definition 4.4 (Restrained EJR for Approval Utilities). We are given a set P of feasible committees
of size at most 𝑘 . A committee𝑊 ∈ P satisfied restrained-EJR if there is no constraint-feasible
blocking coalition 𝑆 ⊆ 𝑉 of voters. Such a blocking coalition with endowment 𝑘 ′ = ⌊ |𝑆 |

𝑛
𝑘⌋ satisfies

the following: For all 𝑘 ′-completable committees �̂� ⊆𝑊 with |�̂� | ≤ 𝑘 − 𝑘 ′, there exists𝑊 ′ with
|𝑊 ′ | ≤ 𝑘 ′ such that
(1) 𝑇 =𝑊 ′ ∪ �̂� ∈ P, and
(2) For all 𝑖 ∈ 𝑆 , | (∩𝑖∈𝑆𝐴𝑖 ) ∩𝑇 | ≥ max𝑖∈𝑆 𝑢𝑖 (𝑊 ) + 1.

We show that pav satisfies exact restrained EJR for approval utilities when the constraints form
the independent sets of a matroid. In contrast, the exact restrained core for this setting can be
empty from Theorem 4.3. More recently, Masařík et al. [2023] proved that the restrained EJR always
exists when the constraint P is downward-closed, and it is incompatible with Pareto-optimality.
This implies that pav can fail restrained EJR when P is not a matroid.

5 SUMMARY OF APPROXIMATION RESULTS
In Table 1, we present a summary of the results for approximate core under various utility functions,
candidate sizes (unit vs. general), and allocation constraints.

6 RELATEDWORKS
Proportionality and the Core. One classic objective in committee selection is achieving fairness

via proportionality, where different demographic slices of voters feel they have been represented
fairly. This general idea dates back more than a century [Droop, 1881], and has recently received
significant attention [Aziz et al., 2017, 2018, Brams et al., 2007, Brill and Peters, 2023, Chamberlin
and Courant, 1983, Fernández et al., 2017, Monroe, 1995]. In fact, there are several elections, both
at a group level and a national level, that attempt to find committees (or parliaments) that provide
approximately proportional representation. For instance, the popular Single Transferable Vote
(STV) rule is used in parliamentary elections in Ireland and Australia, and in several municipal
elections in the USA. This rule attempts to find a proportional solution.

A long line of recent literature has studied the complexity and axiomatization of voting rules that
achieve proportionality; see [Aziz et al., 2019, Brandt et al., 2016, Endriss, 2017, Lackner and Skowron,
2023] for recent surveys. Proportionality in committee selection arises in many other applications
outside of social choice as well. For example, consider a shared cache for data items in a multi-tenant
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Utility Sizes Constraints Approx. Lower Bd. Run Time

𝛽-self bounding General None 𝑒𝑂 (𝛽 ) [2023] 1
2
( 4
3
)𝛽/2 [2023] –

Submodular General None 67.37 [2022b] 1.015 [2022b] Poly.
Additive General None 9.27 [2022b]

Unknown.

–
Approval General None –
Additive General None 15.2 [2022b] Poly.
Approval General None Poly.

𝛽-self bounding Unit General 𝑒𝛽 [2023] 1
2
( 4
3
)𝛽/2 [2023] –

XOS Unit General 𝑒 [2023]
16/15 [2023]

–
Submodular Unit Matroid 2 [2023] Poly.
Approval Unit Matroid Poly.

Table 1. Summary of results for approximate core. The upper bound of 2 for submodular utilities also holds
for approval utilities, while the lower bound of 16/15 for approval utilities also holds for submodular and XOS
utilities. An empty box in “Run Time” implies an existence result.

cloud system, where each data item is used by several long-running applications [Friedman et al.,
2019, Kunjir et al., 2017]. Each data item can be treated as a candidate, and each application as a
voter whose utility for an item corresponds to the speedup obtained by caching that item. In this
context, a desirable caching policy provides proportional speedup to all applications. More recently,
proportionality fairness has been introduced and studied in sequential decision processes Chandak
et al. [2024] and with representatives in metric spaces Kalayci et al. [2024].

The core represents the ultimate form of proportionality: Every demographic of voters feel that
they have been fairly represented and do not have the incentive to deviate and choose their own
committee of proportionally smaller size which gives all of them higher utility. In the typical setting
where these demographic slices are not known upfront, the notion of core attempts to be fair to all
subsets of voters. The work of [Munagala et al., 2021] formally argues that in certain multiwinner
election settings, the core also approximately optimizes simpler diversity measures of the resulting
committee. The core is known to be non-empty in multi-winner elections under certain restrictions
[Brill et al., 2024, Pierczyński and Skowron, 2022]. However, for committee selection with standard
Approval utilities, the non-emptiness of the core remains open (see Section 7.1).

Fisher Markets. Our fractional solutions are superficially related to the Fisher market equilib-
rium [Arrow and Debreu, 1954, Brainard and Scarf, 2005, Nash, 1950] when divisible items need
to be allocated to agents, and agents’ utilities are additive. For the Fisher market, the optimum
Nash Welfare solution finds market clearing prices. However, in a Fisher market, the prices are
common to the agents while the allocations are different, while in a Lindahl equilibrium, the prices
are per-voter while the allocation (or committee) is common and provides shared utility to all the
voters. This is a key difference – the Fisher market has a polynomial time algorithm via convex
programming [Eisenberg and Gale, 1959], while no polynomial time algorithm is known for the
Lindahl equilibrium even when candidates have unit sizes and voters’ utilities are additive (or
linear till the maximum size of the candidate). Similarly, though the Nash Welfare solution finds
market clearing prices for the Fisher market via strong duality, in the case of public goods, there
is no obvious way to interpret the dual of the Nash Welfare solution as market clearing prices.
Moreover, for submodular utilities and multilinear extensions, the Nash Welfare objective is no
longer a convex program, so that strong duality does not apply.
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Approximate Core. In this paper, we have focused on approximating the utility voters obtain on
deviating (see Definition 1.3). As mentioned before, this notion first appeared in [Fain et al., 2018],
and the notion of a single additament in approximation is due to [Peters et al., 2021]. The latter work
present a logarithmic approximation for the special case of additive utilities. The work of [Peters
and Skowron, 2020] shows that the well-known Proportional Approval Voting method [Thiele,
1895] achieves a 2-core for the special case where the utilities are additive and candidates are unit
size, with each voter having utility either zero or one for each candidate. This algorithm can be
viewed as a discrete version of Nash Welfare, and in essence, we can extend this result to the case
of submodular utilities and general costs, showing that it yields a 2-core for the fractional case of
multilinear extension via a polynomial time local search algorithm. The work of [Chen et al., 2019]
presents a constant approximation for the 𝐾-clustering problem, where the committee is a set of
𝐾 centers in a metric space, and the cost of a voter is the distance to the closest center. However,
these ideas do not extend to the committee selection problem we consider in this paper.
The work of [Jiang et al., 2020] considers a different notion of approximation: Instead of ap-

proximating the utility, they approximate the endowment that a voter can use to buy the deviating
committee. Building on the work of [Cheng et al., 2020], it shows a different fractional relaxation,
to which a 2-approximation always exists. They then iteratively round this fractional solution to
an integer solution that is a 32-approximation for all monotone utility functions. The problem of
approximating utilities is very different; indeed, Theorem 2.7 shows we cannot hope to have a
similar constant approximation for all utility functions. Nevertheless, we use the idea of iterative
rounding from that work, albeit with an entirely different fractional solution and analysis. In effect,
we showcase the power of iterative rounding as a unifying framework for finding approximate
core solutions, regardless of the notion of approximation.

Rounding Techniques. The notion of multilinear extension and correlation gap has been widely
used in stochastic optimization [Agrawal et al., 2010], mechanism design [Yan, 2011], and round-
ing [Călinescu et al., 2011, Chekuri et al., 2014, Vondrák, 2008]. Typically, it has been used to develop
computationally efficient approaches; on the other hand, we demonstrate an application to showing
a purely existential result. Similarly, rounding of market clearing solutions have been used to show
approximately fair allocations of indivisible goods among agents [Barman et al., 2018a, Cole and
Gkatzelis, 2015]. The structure of these problems (common prices but different allocations) is very
different from ours (common allocations and different prices), and we need different techniques.
Again, in contrast with the resource allocation literature, we need the rounding just to show an
existence result as opposed to a computational one.

Auditing for Fairness. The question of auditing has become salient given the increasing democra-
tization of societal decision making, for instance via processes like participatory budgeting. In the
context of social choice, there are natural properties that are easy to achieve algorithmically but
hard to audit. For instance, checking if an arbitrary outcome is Pareto-optimal is computationally
hard [Aziz et al., 2016], while achieving it via some algorithm is easy. We take a further step in
this direction by studying the approximate audit of arguably the strongest possible group fairness
notion, the core, as well as related fairness properties.
Going beyond social choice, the notion of auditing for group fairness has gained prevalence in

machine learning. Here, the “voters” are data points, and the “committee” is a classifier. We wish
to audit if the classifier provides comparable accuracy for various demographic slices. The work
of [Kearns et al., 2018] formulates and presents algorithms for this problem.

Nash Social Welfare. The snw objective is closely related to Nash Social Welfare [Arrow and
Debreu, 1954, Brainard and Scarf, 2005, Nash, 1950]. This has been widely studied in the allocation
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of private goods, where each participant has an additive utility over the bundle of goods they receive.
When goods are divisible, Nash Welfare is the solution to the Fisher market equilibrium [Eisenberg
and Gale, 1959]. When goods are indivisible, [Caragiannis et al., 2019] show that a local optimum
to this objective (where pairs of goods can be swapped between individuals) satisfies approximate
envy-freeness (EF1). The global optimum of the Nash Welfare objective satisfies Pareto-optimality
as well. We note that this setting, there are pseudo-polynomial time algorithms achieving both
properties [Barman et al., 2018b]. In contrast, our paper shows fairness properties for Nash Welfare
in settings where no computationally efficient approximations to stability are even possible.

Core with Constraints. Prior work has tried addressing the aspect of constraints via either chang-
ing the definition of the core or what an approximation means. We now contrast these with the
present work. As mentioned before, the work of [Cheng et al., 2020, Jiang et al., 2020] considers
a different approximation notion where the endowment of a coalition is scaled down when they
deviate. Their results extend to packing constraints of the form 𝐴®𝑥 ≤ 𝑏, where ®𝑥 is a binary vector
representing which candidates are present in the committee. However, for a coalition of size 𝛼𝑛,
they require the deviating committee ®𝑦 satisfy 𝐴®𝑦 ≤ 𝛼𝑏, that is, they change the constraint set to
make it more strict. This may make the constraint on deviation impossible to satisfy – for instance,
an independent set constraint is of the form 𝑥 𝑗 + 𝑥ℓ ≤ 1, where 𝑗, ℓ ∈ 𝐶 . If we replace the RHS by
𝛼 < 1, this forces both of 𝑗, ℓ to not be chosen, so that the only feasible committee for any deviation
is empty. In contrast, Definition 4.1 does not change the constraint set, and further, works not just
for packing constraints, but for other constraints such as the Rooney Rule.

A different notion of core for multiwinner elections, defined in [Fain et al., 2018], is the following:
When a coalition 𝑆 deviates, they are allowed to choose a committee of size 𝑘 ; however, they need
to obtain a factor 𝛾 · 𝑛/|𝑆 | factor larger utility on deviation for it to be a 𝛾-approximate core. Like
our notion, their notion also allows for constraints. Indeed, they consider the same setting as our
matroid constraint except with additive utilities and show that the same Local algorithm yields
an approximate core solution in their notion as well. However, the approximation factor becomes
super-constant for multiple matroid constraints or for general packing constraints, even with
approval utilities. Indeed, they show that the core does not exist to any non-trivial approximation
for independent set constraints with approval utilities. In contrast, Definition 4.1 extends smoothly
to arbitrary constraints, yielding a 𝑒𝛽 -approximate core for very general 𝛽-self bounding utilities.

7 OPEN QUESTIONS
In this section, we propose some directions and list some open questions related to core stability in
participatory budgeting (and committee selection).

7.1 Exact core existence and Lindahl priceability
Simple as it may look, the following problem is well-known in the social choice community and
has been open for years:

Open Question 1. In committee selection with Approval utilities, does there always exist a
committee𝑊 that lies in the exact (i.e. 1-approximate) core?

In our work of auditing the core stability, we have discovered some interesting concepts related
to the exact core stability. We term it Lindahl Priceability:

Definition 7.1 (Lindahl Priceability). A committee𝑊 of size at most 𝑘 is Lindahl priceable if there
exists a price system {𝑝𝑖 𝑗 } from voters to candidates, such that the following hold:

1. ∀𝑗 ∈ [𝑚], ∑𝑖 𝑝𝑖 𝑗 ≤ 1, and
2. ∀𝑖 ∈ [𝑛], 𝑇 ⊆ 𝐶 , if |𝑇 ∩𝐴𝑖 | ≥ |𝑊 ∩𝐴𝑖 | + 1, then

∑
𝑗∈𝑇 𝑝𝑖 𝑗 > 𝑘/𝑛.
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Assume that each candidate costs 1. Since the committee size is at most 𝑘 , we have a public
budget 𝑘 . The budget is then split equally among all the voters, so each voter has a budget of 𝑘/𝑛.
The first condition above means that for each candidate, the prices from all voters sum up to at
most 1, so that each candidate is not “over-paid”. The second condition means a voter cannot afford
any committee that she strictly prefers to𝑊 .

Lindahl priceability can be viewed as an integral version of the gradient optimality conditions in
the fractional Lindahl equilibrium [Foley, 1970]. Analogous to the fractional Lindahl equilibrium,
we have shown in [Munagala et al., 2022a] that the following proposition holds:

Proposition 7.2. If a committee is Lindahl priceable, it lies in the core.

However, even though Lindahl priceability implies core stability, we do not know if it is strictly
stronger than the core. We conjecture that these two notions are the same:

Open Question 2. In committee selection with Approval utilities, if a committee𝑊 is in the
exact core, is it Lindahl priceable?

We also do not know if there always exists a committee that is Lindahl priceable. Since we believe
Lindahl priceability is a more interpretable notion than the core stability, the following problem
might be easier to think of than Open Problem 1. Note that if the answer to Open Problem 2 is
“YES”, the following question is equivalent to Open Question 1.

Open Question 3. In committee selection with Approval utilities, does there always exists a
Lindahl priceable committee𝑊 ?

7.2 Relaxation to the exact core via loss from the current committee
In [Munagala et al., 2022a], we have proposed a relaxation of core stability in committee selection,
in the sense that a group of voters will only deviate if each of them is strictly better off, while not
giving up anyone in her approval set in the current committee. We call this sub-core.

Definition 7.3 (Sub-core). A committee𝑊 lies in the sub-core if there is no 𝑆 ⊆ 𝑉 and committee
𝑇 with |𝑇 | ≤ |𝑆 |

𝑛
· 𝑘 , s.t. 𝐴𝑖 ∩𝑊 ⊊ 𝐴𝑖 ∩𝑇 for all 𝑖 ∈ 𝑆 .

It is easy to show that sub-core always exists, and can be found by many rules, e.g., Phragmén’s
rule [Brill et al., 2017].

The sub-core can also be viewed as every voter has zero tolerance for the loss from the current
committee when they deviate. If voters are deviating from𝑊 , they can only deviate to a new
committee𝑇 when the approved candidates in𝑇 form a strict superset of their approved candidates
in𝑊 . However, when we try to move one step further from the sub-core to core, we get stuck.
Consider the following extended version of Definition 7.3, where every voter can tolerate at most a
loss of 𝑞 approved candidates from the current committee𝑊 :

Definition 7.4 (𝑞-tolerant core). A committee𝑊 lies in the 𝑞-sub-core if there is no 𝑆 ⊆ 𝑉 and
committee 𝑇 with |𝑇 | ≤ |𝑆 |

𝑛
· 𝑘 , s.t. |𝐴𝑖 ∩𝑇 | ≥ |𝐴𝑖 ∩𝑊 | + 1 and | (𝐴𝑖 ∩𝑊 ) \ (𝐴𝑖 ∩𝑇 ) | ≤ 𝑞 for all

𝑖 ∈ 𝑆 .

Based on the above definition, we observe that the sub-core is equivalent to the 0-tolerant core
and the exact core (Definition 1.2) is equivalent to the ∞-tolerant core. Definition 7.4 becomes
stronger as 𝑞 increases, yet even for 𝑞 = 1, we do not know if the 1-tolerant core is always non-
empty. Therefore, we propose the following question as a possible “first step” towards the existence
of exact core (Open Question 1):
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Open Question 4. (Weaker version of Open Question 1) In committee selection with Approval
utilities, does there always exist a committee𝑊 that lies in the 1-tolerant core?

7.3 Extending Table 1
As readers may realize, our constant approximation results for the core results are generalized only
to 𝑋𝑂𝑆 and self bounding utility functions. The next utility setting where we do not know how to
get a constant approximation for unit-size candidates is the sub-additive utilities.
Open Question 5. For unit-size candidates with sub-additive utilities, does there exist a committee
that lies in the 𝑐-core for some constant 𝑐?
On the other side, since all our restrained core results are for unit-size candidates, a natural

question to ask is whether we can extend these approximation results to arbitrary candidate sizes:
Open Question 6. Can we extend Definition 4.1 to participatory budgeting and also get a constant
approximation to the restrained core in participatory budgeting with general candidate sizes?

7.4 Different notions of Core Approximations
In this paper, we have presented two different notions of approximation to the core stability
Definitions 1.3 and 3.1. Fain et al. [2018] have proposed an alternative notion of core stability in the
context of public goods, allowing deviating voters to utilize the entire budget. They also developed
approximate versions of this concept. Based on the existing reduction relation demonstrated in the
proof of Theorem 2.9 (see [Mavrov et al., 2023]), we naturally wonder whether there is an inherent
connection between the different approximation definitions of the core.
Open Question 7. Is it possible to explore more relations (e.g. reduction relations) between the
different notions of approximate core stability?

Moreover, our auditing results are only for the approximate endowment core. Other than closing
the log gap between the positive and hardness results in auditing for core stability, we ask the
following question:
Open Question 8. Can we audit core stability with the classic utility relaxation? More concretely,
given a committee𝑊 , can we (approximately) compute the smallest 𝛼 efficiently such that𝑊 does
not lie in the 𝛼-core (see Definition 1.3)?

7.5 Fairness with Allocation Constraints
In Mavrov et al. [2023], we extend the restrained core to restrained extended justified represen-
tation (restrained EJR). We show that Local pav satisfies restrained EJR for Approval elections
with matroid constraints. However, matroid constraints seem too limited. We conjecture that the
restrained EJR always exists, regardless of what constraints we have. Masařík et al. [2023] have
recently shown that the conjecture is correct with downward closed constraints, but downward
closed constraints still fail to cover some common constraint scenarios like bundled candidates (𝑐𝑎
and 𝑐𝑏 can only be chosen or unchosen together). This begs the following question:
Open Question 9. Does a committee with restrained EJR always exist for arbitrary constraints,
especially non-downward closed constraints?
Finally, it will be interesting to study fairness with allocation constraints in other economic

contexts, for instance, envy-freeness in allocation of private goods, or stability in matchings. The
two-stage approach to define the restrained core may widely extend to establish fairness notions
for these problems.
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