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We study a fair division setting in which participants are to be fairly distributed among teams, where not only

do the teams have preferences over the participants as in the canonical fair division setting, but the participants

also have preferences over the teams. We focus on guaranteeing envy-freeness up to one participant (EF1) for

the teams together with a stability condition for both sides. We show that an allocation satisfying EF1, swap

stability, and individual stability always exists and can be computed in polynomial time, even when teams

may have positive or negative values for participants. When teams have nonnegative values for participants,

we prove that an EF1 and Pareto optimal allocation exists and, if the valuations are binary, can be found in

polynomial time. We also show that an EF1 and justified envy-free allocation does not necessarily exist, and

deciding whether such an allocation exists is computationally difficult.

1 INTRODUCTION
The new season of a youth sports league is starting in three months, and the league organizers

need to allocate the participating players to the available teams. How can they accomplish this task

in a satisfactory way, so that all parties involved can look forward to the upcoming season instead

of grumbling about the allocation?

A principal consideration in such allocation tasks is fairness, and the problem of fairly dividing

resources (in this case, participants) among interested recipients (in this case, teams) has long

been studied in economics under the name of fair division [Brams and Taylor, 1996, Moulin, 2003,

2019]. Ensuring fairness among teams is crucial for the sustainability of the league, the motivation

for taking part, and the enhancement of competition. Among the fairness notions that have been

proposed in the literature, one of the strongest and most prominent is envy-freeness, which stipulates
that no team should envy another team based on the sets of participants that they receive.

1
Even

though an envy-free allocation may not exist (e.g., if there is one highly-coveted superstar), an

intuitive relaxation called envy-freeness up to one participant (EF1)—that is, any envy that one

team has toward another team can be eliminated upon the removal of some participant in the

envied team—can always be fulfilled [Budish, 2011, Lipton et al., 2004]. Another relevant criterion

is balancedness, which requires the participants to be distributed as equally among the teams as

possible.
2
Balancedness can be especially desirable when allocating players to sports teams, as

each team may need to have a fixed number of players due to the rules of the sport. Assuming that

teams have additive and nonnegative values for participants, an allocation that is both EF1 and

balanced always exists and can be found efficiently via a simple round-robin algorithm (see, e.g.,

Caragiannis et al. 2019, p. 7). In fact, this algorithm forms the basis of draft processes used in many

sports leagues around the world.
3

While EF1 provides a strong fairness guaranteewith respect to the teams’ preferences, it overlooks

the fact that the participating players may have preferences over the teams as well, for example,

depending on their familiarity with the team managers or the proximity of their residence to the

training grounds. Clearly, ignoring the preferences of the participants may lead to a suboptimal

allocation. As an extreme case, if every team is indifferent between all participants, then swapping

1
Due to the setting that we study, throughout this paper we will use the terms team and participant in place of the standard

fair division terms agent and item, respectively.

2
One could view balancedness as EF1 with respect to the number of allocated participants.

3
Please refer to http://wikipedia.org/wiki/Draft_(sports).
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a pair of participants keeps the teams as happy as before and may make both of the swapped

participants much happier. In addition to our sports league example, two-sided preferences also

occur in the allocation of students to thesis supervisors, employees to different branches of a

restaurant chain, or volunteers to community service clubs. Moreover, the participant preferences

could signify the suitability of the teams for the participants—for instance, the “participants” could

represent tasks (such as household chores or papers to be reviewed), and the “teams” have varying

levels of ability to perform the tasks. As we shall discuss in Section 1.2, with few exceptions, the

vast fair division literature deals exclusively with one-sided preferences. Can we find an allocation

that is fair to the teams and, at the same time, satisfies a stability condition with respect to the

preferences of both sides?

1.1 Our Results
As is common in fair division, we assume that the teams have additive valuations over the par-

ticipants, that is, a team’s value for a set of participants is equal to the sum of its values for the

individual participants in this set.
4
Some of our results allow these values to be either positive or

negative; this corresponds to the allocation of indivisible goods and chores [Aziz et al., 2022]. For
consistency of terminology, we will use the terms nonnegative-value participants and nonpositive-
value participants instead of goods and chores, respectively. We formally define the notions that we

consider and outline some relationships between them in Section 2.

In Section 3, we focus on swap stability, that is, the requirement that no swap between two

participants makes at least one of the four involved parties better off and none of them worse off.

First, we observe that even with nonnegative-value participants, starting with an arbitrary EF1

allocation and letting participants make beneficial swaps may result in an allocation that violates

EF1. Despite this fact, for teams with arbitrary (positive or negative) values over participants, we

present a polynomial-time algorithm that produces a balanced and swap stable allocation satisfying

EF[1,1], a relaxation of EF1 where one participant may be removed from each of the envying team

and the envied team.
5
Since EF[1,1] reduces to EF1 for nonnegative-value participants as well

as for nonpositive-value participants, we obtain the same result for EF1 in each of these cases.

We then note two ways in which our arbitrary-value result cannot be improved: EF[1,1] cannot

be strengthened to EF1, and we cannot simultaneously attain individual stability—the condition
that no deviation of a participant to another team makes the participant better off and neither

of the involved teams worse off. Nevertheless, we show that if we give up balancedness, both of

these improvements become possible: an allocation that satisfies EF1, swap stability, and individual

stability exists and can be found efficiently.

Next, in Section 4, we consider the notion of Pareto optimality (PO)—no allocation can make a

party (i.e., either participant or team) better off without making another party worse off—which

is stronger than both swap stability and individual stability. We prove that deciding whether an

allocation is PO or not is coNP-complete even for two teams with identical valuations, nonnegative-

value participants, and a balanced allocation. On the other hand, for two teams with arbitrary

valuations, we show that an extension of the generalized adjusted winner procedure of Aziz et al.
[2022] computes an EF1 and PO allocation in polynomial time. For any number of teams and

nonnegative-value participants, we observe that an EF1 and PO allocation always exists. Moreover,

we demonstrate that such an allocation can be found efficiently in two special cases: (i) the teams

have binary valuations over the participants, and (ii) there are three teams with identical valuations,

4
As Caragiannis et al. [2019] noted, the assumption of additive valuations is “indispensable” in practical applications, because

it permits simple elicitation of the valuations.

5
When both positive and negative values are allowed, EF1 permits one participant to be removed from either the envying

team or the envied team (but not both) [Aziz et al., 2022].
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Properties Existence

EF[1,1] + balanced + swap stable Yes (Thm. 3.2)

EF1 + balanced No (Prop. 3.7)

balanced + individually stable No (Prop. 3.8)

EF1 + swap stable + individually stable Yes (Thm. 3.9)

EF1 + PO (nonnegative-value participants) Yes (Thm. 4.5)

EF1 + PO + team-PO (two teams) Yes (Thm. 4.3)

EF1 + participant-PO No (Prop. 4.4)

EF1 + justified EF No (Prop. 5.1)

Table 1. Summary of our results on whether each combination of properties can always be satisfied simulta-
neously, with the corresponding theorem or proposition number.

and each participant has a favorite team and is indifferent between the other two teams. We also

provide a pseudopolynomial-time algorithm when the number of teams is constant.

Finally, in Section 5, we examine justified envy-freeness, a stability notion from the two-sided

matching literature: participant 𝑝𝑖 is said to have justified envy toward another participant 𝑝 𝑗

assigned to team 𝑘 if 𝑘 prefers 𝑝𝑖 to 𝑝 𝑗 and 𝑝𝑖 prefers 𝑘 to her assigned team. Perhaps surprisingly,

we show that an EF1 and justified envy-free allocation may not exist, even for two teams and

nonnegative-value participants who all prefer the same team. We then prove that deciding whether

such an allocation exists is NP-complete even for nonnegative-value participants who have strict

preferences over the teams. On the other hand, if one adds the condition that there are two teams,

we show that the problem becomes polynomial-time solvable.

Our (non-)existence results are summarized in Table 1. In Appendix A, we demonstrate how

some of our notions and results can be extended to accommodate quota constraints.

1.2 Related Work
Even though fair division has given rise to a sizable body of work [Brams and Taylor, 1996, Moulin,

2003, 2019], the vast majority of the literature assumes one-sided preferences—in our terminology,

the teams have preferences over the participants, but not vice versa. A small number of recent papers

have combined fairness concepts with two-sided preferences. Freeman et al. [2021] considered

many-to-many matching and proposed the notion of double envy-freeness up to one match (DEF1),
which requires EF1 to hold for both sides simultaneously. Note that in our many-to-one setting,

DEF1 is meaningless on the participant side because it is always trivially satisfied. Gollapudi et al.

[2020] studied many-to-many matching in a dynamic setting; their positive results primarily hold

for symmetric binary valuations, which are much more restrictive than the valuations that we allow.

Patro et al. [2020] investigated fairness in two-sided platforms between producers and customers,

but assumed that producers are indifferent between customers. We emphasize that none of these

papers addressed a model that suitably captures our motivating examples such as the allocation of

sports players to teams or volunteers to community service clubs.

While most fair division papers assume that the items (in our terminology, participants) are

goods and some assume that they are chores, a recent line of work has relaxed these assumptions

by allowing items to be either goods or chores, with this evaluation possibly varying across agents

(in our terminology, teams) [Aleksandrov and Walsh, 2020, Aziz et al., 2022, Aziz and Rey, 2020,
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Bérczi et al., 2024, Bhaskar et al., 2021, Hosseini et al., 2023, Kulkarni et al., 2021]. Bogomolnaia et al.

[2017] coined the term mixed manna to describe such division problems. Aziz et al. [2022] showed

that an EF1 allocation always exists and can be found efficiently, and that the same is true for an

EF1 and PO allocation when there are two agents. Bhaskar et al. [2021] provided a polynomial-time

algorithm for computing an EF1 allocation when valuations are not necessarily additive but each

agent can partition the items into those that always yield nonnegative marginal utility and those

that always yield nonpositive marginal utility. Bérczi et al. [2024] established the existence of an

EF1 allocation for arbitrary set valuations in the case of two agents.

Finally, even though our setting can be seen as a many-to-one matching with two-sided prefer-

ences, to the best of our knowledge, the matching literature has not considered fairness among

teams, whether using EF1 or other fairness notions. By contrast, justified envy is commonly in-

vestigated in two-sided matching. Indeed, it forms the basis of the stability notion in one-to-one

matching famously studied by Gale and Shapley [1962]. Justified envy-freeness is also often con-

sidered in many-to-one matching [Abdulkadiroğlu et al., 2020, Abdulkadiroğlu and Sönmez, 2003,

Fragiadakis et al., 2015, Kamada and Kojima, 2017, Wu and Roth, 2018, Yokoi, 2020]. In particular,

in many-to-one matching with upper quotas (also known as the Hospitals/Residents problem), it is

viewed as a relaxation of stability: while stability disallows the existence of a participant who wants

to claim a team’s vacant seat, justified envy-freeness tolerates the existence of such a participant.

Thus, a justified envy-free matching may exist even when a stable matching does not.

2 PRELIMINARIES
For each positive integer 𝑧, let [𝑧] B {1, . . . , 𝑧}. Let𝑇 = [𝑛] be the set of teams and 𝑃 = {𝑝1, . . . , 𝑝𝑚}
the set of participants; we sometimes refer to either a team or a participant as a party.6 Each
participant 𝑝 ∈ 𝑃 has a weak transitive preference ≿𝑝 over the teams, with ≻𝑝 and ∼𝑝 denoting

the strict and equivalence part of ≿𝑝 , respectively.
7
The rank of a team 𝑖 for a participant 𝑝 is

defined as 1 plus the number of teams 𝑗 such that 𝑗 ≻𝑝 𝑖 . Each team 𝑖 ∈ 𝑇 has a valuation function

(or utility function) 𝑣𝑖 : 2
𝑃 → R over subsets of participants. We assume that the valuations are

additive, i.e., 𝑣𝑖 (𝑃 ′) =
∑

𝑝∈𝑃 ′ 𝑣𝑖 ({𝑝}) for all 𝑖 ∈ 𝑇 and 𝑃 ′ ⊆ 𝑃 . For convenience, we write 𝑣𝑖 (𝑝)
instead of 𝑣𝑖 ({𝑝}). An instance consists of the teams and participants, as well as the valuations and

preferences of both sides. Sometimes we will consider the setting of nonnegative-value participants
(resp., nonpositive-value participants), which means that 𝑣𝑖 (𝑝) ≥ 0 (resp., 𝑣𝑖 (𝑝) ≤ 0) for all 𝑖 ∈ 𝑇
and 𝑝 ∈ 𝑃 .

An allocation 𝐴 = (𝐴1, 𝐴2, . . . , 𝐴𝑛) is an ordered partition of 𝑃 into 𝑛 parts, where the part 𝐴𝑖 is

assigned to team 𝑖 . We will investigate several fairness and stability notions for allocations. A basic

fairness consideration on the team side is (almost) envy-freeness.

Definition 2.1. An allocation 𝐴 is said to satisfy

• EF1 if for all distinct 𝑖, 𝑗 ∈ 𝑇 , it holds that 𝑣𝑖 (𝐴𝑖 \𝑋 ) ≥ 𝑣𝑖 (𝐴 𝑗 \𝑌 ) for some𝑋 ⊆ 𝐴𝑖 and 𝑌 ⊆ 𝐴 𝑗

with |𝑋 ∪ 𝑌 | ≤ 1;

• EF[1,1] if for all distinct 𝑖, 𝑗 ∈ 𝑇 , it holds that 𝑣𝑖 (𝐴𝑖 \ 𝑋 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ 𝑌 ) for some 𝑋 ⊆ 𝐴𝑖 and

𝑌 ⊆ 𝐴 𝑗 with |𝑋 |, |𝑌 | ≤ 1.

EF1 was first studied for nonnegative-value participants by Lipton et al. [2004] (though the term

itself was coined by Budish [2011]) and subsequently extended to arbitrary-value participants by

6
While we formulate our model in the language of team allocation, as we discussed in Section 1, our model can be applied

to a wide range of scenarios.

7
All notions considered in this paper take into account only the participants’ ordinal preferences, so we do not assume

cardinal utilities for the participants.
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Aziz et al. [2022], while EF[1,1] was recently introduced by Shoshan et al. [2023]. It follows imme-

diately from the definition that EF1 implies EF[1,1]. Moreover, if all participants yield nonnegative

value, there is no reason to remove a participant from 𝐴𝑖 , so EF1 and EF[1,1] coincide in this case;

an analogous statement holds for nonpositive-value participants with 𝐴𝑖 replaced by 𝐴 𝑗 .

Our next criterion is balancedness, which requires the participants to be distributed as equally

among the teams as possible.

Definition 2.2. An allocation 𝐴 is said to be balanced if

��|𝐴𝑖 | − |𝐴 𝑗 |
�� ≤ 1 for all 𝑖, 𝑗 ∈ 𝑇 .

Observe that if there exists a constant 𝑐 ≠ 0 such that 𝑣𝑖 (𝑝) = 𝑐 for all 𝑖 ∈ 𝑇 and 𝑝 ∈ 𝑃 , then both

EF1 and EF[1,1] coincide with balancedness.

We now define stability concepts, several of which take into account the preferences of both

sides. We say that a party is better off (resp., worse off ) if it receives a better (resp., worse) outcome

with respect to its valuation function (for a team) or preference (for a participant).

Definition 2.3. Given an allocation 𝐴, a swap between participants 𝑝 ∈ 𝐴𝑖 and 𝑝
′ ∈ 𝐴 𝑗 (for some

𝑖, 𝑗 ∈ 𝑇 ) is a beneficial swap if it makes at least one of the four involved parties better off and none

of them worse off. A deviation of a participant 𝑝 to another team is a beneficial deviation if it makes

𝑝 better off and neither of the teams involved worse off.

An allocation 𝐴 is said to be swap stable if it does not admit a beneficial swap.
8
It is said to be

individually stable if it does not admit a beneficial deviation.
9

Definition 2.4. An allocation 𝐴 is said to be Pareto dominated by another allocation 𝐴′ if no
party is worse off in 𝐴′ than in 𝐴 and at least one party is better off; in this case, 𝐴′ is a Pareto
improvement of 𝐴. An allocation 𝐴 is Pareto optimal (PO) if it is not Pareto dominated by any other

allocation.

We define team-Pareto dominated, team-Pareto optimal (team-PO), participant-Pareto dominated,
and participant-Pareto optimal (participant-PO) similarly, with “party” replaced by “team” and

“participant”, respectively.

Although PO clearly implies both swap stability and individual stability, it implies neither

team-PO nor participant-PO.

Proposition 2.5. PO does not necessarily imply team-PO.

Proof. Consider the following instance with 𝑛 =𝑚 = 2:

• 𝑣1 (𝑝1) = 𝑣1 (𝑝2) = 𝑣2 (𝑝1) = 1 and 𝑣2 (𝑝2) = 0;

• 1 ≻𝑝1 2 and 2 ≻𝑝2 1.
The allocation 𝐴 =

(
{𝑝1}, {𝑝2}

)
is team-Pareto dominated by the allocation 𝐴′ =

(
{𝑝1, 𝑝2}, ∅

)
, so 𝐴

is not team-PO. However, 𝐴 is PO since each participant is already assigned to her unique favorite

team. □

Proposition 2.6. PO does not necessarily imply participant-PO.
8
One could define a stronger version of swap stability, where a swap is beneficial if it makes at least one of the two involved

participants better off and neither of them worse off (without taking into account the team preferences). However, this

notion is clearly incompatible with EF1 or EF[1,1]. For example, this is the case in the instance with 𝑛 = 2 teams and

𝑚 = 4 participants, where 𝑣1 (𝑝1 ) = 𝑣1 (𝑝2 ) = 𝑣2 (𝑝3 ) = 𝑣2 (𝑝4 ) = 1, 𝑣1 (𝑝3 ) = 𝑣1 (𝑝4 ) = 𝑣2 (𝑝1 ) = 𝑣2 (𝑝2 ) = 0, 2 ≻𝑝 𝑗
1 for

𝑗 ∈ {1, 2}, and 1 ≻𝑝 𝑗
2 for 𝑗 ∈ {3, 4}.

9
This is analogous to the notion of contractual individual stability in hedonic games [Aziz and Savani, 2016]. If we only

require that the deviation does not make the participant’s new team worse off (as in individual stability in hedonic games),

then supposing that all participants yield nonnegative value, the only stable allocations are the allocations in which every

participant is assigned to one of her most preferred teams.
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Proof. Consider the following instance with 𝑛 =𝑚 = 2:

• 𝑣1 (𝑝1) = 𝑣1 (𝑝2) = 𝑣2 (𝑝1) = 𝑣2 (𝑝2) = 1;

• 1 ≻𝑝1 2 and 1 ≻𝑝2 2.
The allocation 𝐴 =

(
{𝑝1}, {𝑝2}

)
is participant-Pareto dominated by the allocation 𝐴′ =

(
{𝑝1, 𝑝2}, ∅

)
,

so 𝐴 is not participant-PO. However, one can check that 𝐴 is PO. □

On the other hand, PO is implied by the combination of team-PO and participant-PO.

Proposition 2.7. Team-PO and participant-PO together imply PO. However, either team-PO or
participant-PO alone does not necessarily imply PO.

Proof. Consider an allocation 𝐴 that is both team-PO and participant-PO, and assume for

contradiction that it is not PO. Then, there is an allocation 𝐴′ that is a Pareto improvement of 𝐴.

Every party is better off in 𝐴′ compared to in 𝐴, and at least one party is strictly better off. If a

team is strictly better off, then 𝐴′ team-Pareto dominates 𝐴, so 𝐴 is not team-PO. If a participant

is strictly better off, then 𝐴′ participant-Pareto dominates 𝐴, so 𝐴 is not participant-PO. In either

case, we arrive at a contradiction.

To see that team-PO does not imply PO, consider the following instance with 𝑛 =𝑚 = 2:

• 𝑣1 (𝑝1) = 𝑣1 (𝑝2) = 𝑣2 (𝑝1) = 𝑣2 (𝑝2) = 1;

• 1 ≻𝑝1 2 and 2 ≻𝑝2 1.
The allocation 𝐴 =

(
{𝑝2}, {𝑝1}

)
is Pareto dominated by the allocation 𝐴′ =

(
{𝑝1}, {𝑝2}

)
, so 𝐴 is not

PO. However, one can check that 𝐴 is team-PO.

To see that participant-PO does not imply PO, consider the following instance with 𝑛 =𝑚 = 2:

• 𝑣1 (𝑝1) = 𝑣2 (𝑝2) = 1 and 𝑣2 (𝑝1) = 𝑣1 (𝑝2) = 0;

• 1 ∼𝑝1 2 and 2 ∼𝑝2 1.
The allocation 𝐴 =

(
{𝑝2}, {𝑝1}

)
is Pareto dominated by the allocation 𝐴′ =

(
{𝑝1}, {𝑝2}

)
, so 𝐴 is not

PO. However, 𝐴 is participant-PO since both participants are indifferent between both teams. □

Finally, we define the concept of justified envy.

Definition 2.8. Given an allocation 𝐴, a participant 𝑝 ∈ 𝐴𝑖 is said to have justified envy toward a

participant 𝑝′ ∈ 𝐴 𝑗 if 𝑗 ≻𝑝 𝑖 and 𝑣 𝑗 (𝑝) > 𝑣 𝑗 (𝑝′). An allocation 𝐴 is justified envy-free (justified EF)
if no participant has justified envy toward another participant.

One could consider a weaker version of justified envy where the envy is considered justified even

if the team is indifferent (i.e., 𝑗 ≻𝑝 𝑖 and 𝑣 𝑗 (𝑝) ≥ 𝑣 𝑗 (𝑝′)); this leads to a stronger version of justified

EF. While our non-existence result (Proposition 5.1) automatically carries over to this version, the

alternative definition appears to be too strong in the sense that even in a simple instance with two

teams having value 1 for each of two participants, if both participants prefer the same team, then no

EF1 and (alternative) justified EF allocation exists. In particular, our existence result (Theorem 5.4)

does not hold for this version.
10
Moreover, our definition of justified envy corresponds to the notion

of weak stability from the stable matching literature, whereas the alternative definition does not

correspond to other known stability notions such as strong stability and super-stability (see, e.g.,

the book by Manlove [2013, p. 27] for details).

We end this section by showing that there are no implication relations between justified EF and

the three notions PO, swap stability, and individual stability.

10
On the other hand, our algorithm in Theorem 5.3 can be adapted to this version of justified EF.
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• Justified EF does not imply individual stability. Consider an instance with 𝑛 = 2, 𝑚 = 1,

𝑣1 (𝑝1) = 1, 𝑣2 (𝑝1) = 0, and 1 ≻𝑝1 2. The allocation 𝐴 = (∅, {𝑝1}) is justified EF, but it is not

individually stable. This also means that justified EF does not imply PO.

• Justified EF does not imply swap stability. Consider an instance with 𝑛 = 𝑚 = 2, 𝑣1 (𝑝1) =
𝑣2 (𝑝2) = 1, 𝑣1 (𝑝2) = 𝑣2 (𝑝1) = 0, 1 ∼𝑝1 2, and 1 ∼𝑝2 2. The allocation 𝐴 = ({𝑝2}, {𝑝1}) is
justified EF, but it is not swap stable.

• PO does not imply justified EF. This follows from the fact that an EF1 and PO allocation

exists for every instance with nonnegative-value participants (Theorem 4.5) but there is an

instance with nonnegative-value participants in which no EF1 and justified EF allocation

exists (Proposition 5.1). This also means that neither swap stability nor individual stability

implies justified EF.

3 SWAP STABILITY
In this section, we focus on swap stability. A natural idea for obtaining an EF1 and swap stable

allocation is to start with an arbitrary EF1 allocation and let participants swap as long as a beneficial

swap exists. Note that determining whether beneficial swaps exist (and, if so, finding such a swap)

can be done in polynomial time since we can simply check all pairs of participants. However, as

can be seen in the following example, this approach does not always result in an EF1 allocation,

even for nonnegative-value participants.

Example 3.1. Consider the following instance with 𝑛 = 3 and𝑚 = 6:

• 𝑣𝑖 (𝑝 𝑗 ) = 0 for 𝑖 ∈ [2] and 𝑗 ∈ [6];
• 𝑣3 (𝑝1) = 𝑣3 (𝑝2) = 1 and 𝑣3 (𝑝3) = 𝑣3 (𝑝4) = 𝑣3 (𝑝5) = 𝑣3 (𝑝6) = 0;

• each participant has a unique favorite team and is indifferent between the other two teams:

𝑝1 and 𝑝2 prefer team 1, 𝑝4 and 𝑝5 prefer team 2, and 𝑝3 and 𝑝6 prefer team 3.

The allocation 𝐴 =
(
{𝑝1, 𝑝4}, {𝑝2, 𝑝5}, {𝑝3, 𝑝6}

)
is EF1. The swap between 𝑝2 and 𝑝4 is the unique

beneficial swap; let 𝐴′ be the allocation after this swap. The allocation 𝐴′ is swap stable, but it is

not EF1 because team 3 envies team 1 by more than one participant.

In spite of this example, we show that an EF[1,1] and swap stable allocation that is moreover

balanced always exists and can be found efficiently.

Theorem 3.2. For any instance, a balanced allocation that satisfies EF[1,1] and swap stability exists
and can be computed in polynomial time.

Since EF[1,1] reduces to EF1 for nonnegative-value participants as well as for nonpositive-value

participants, Theorem 3.2 implies the following corollary.

Corollary 3.3. For any nonnegative-value participant instance, a balanced allocation that satisfies
EF1 and swap stability exists and can be computed in polynomial time. The same holds for any
nonpositive-value participant instance.

Our algorithm for Theorem 3.2 proceeds in a round-robin manner. However, instead of assigning

a participant to a team in each turn as is usually done, we only assign a participant’s value to the

team; this ensures that more possibilities are available in later turns. Then, among the allocations

that satisfy the determined values for teams, we compute an allocation that minimizes the sum

of the participants’ ranks for the teams. Formally, the algorithm is described as Algorithm 1. For

each positive integer 𝑞, we denote by 𝑓 (𝑞) the unique integer in [𝑛] such that 𝑓 (𝑞) ≡ 𝑞 (mod 𝑛).
For a matching 𝜇 with (𝑞, 𝑝) ∈ 𝜇, we define the notation 𝜇𝑞 and 𝜇𝑝 so that 𝜇𝑞 = 𝑝 and 𝜇𝑝 = 𝑞. Note

that each 𝑞 ∈ 𝑄 corresponds to a copy of team 𝑓 (𝑞). For example, given an instance with 𝑛 = 3

and𝑚 = 7, we construct a bipartite graph𝐺 with |𝑄 | = |𝑃 | = 7. The vertices 1, 4, 7 ∈ 𝑄 correspond
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Algorithm 1: For computing an EF[1,1], swap stable, and balanced allocation

1 Construct a complete bipartite graph 𝐺 = (𝑄, 𝑃 ;𝐸) with weight function𝑤 : 𝐸 → R where

𝑄 = [𝑚] and𝑤 (𝑞, 𝑝) = 𝑣 𝑓 (𝑞) (𝑝) for each (𝑞, 𝑝) ∈ 𝑄 × 𝑃 ; // The set 𝑄 mimics the available
positions within the teams

2 Compute a perfect matching 𝜇 ⊆ 𝑄 × 𝑃 such that the weight of the edge adjacent to vertex

1 ∈ 𝑄 is as large as possible, and subject to this condition, the weight of the edge adjacent

to vertex 2 ∈ 𝑄 is as large as possible, and so on until vertex𝑚 ∈ 𝑄 ; // Simulate
round-robin with only the participants’ values being assigned to teams

3 Let 𝐸∗ = {(𝑞, 𝑝) ∈ 𝑄 × 𝑃 | 𝑤 (𝑞, 𝑝) = 𝑤 (𝑞, 𝜇𝑞)}; // Keep edges that are as good for the teams
as those in 𝜇

4 Compute a perfect matching 𝜇∗ in 𝐺∗ = (𝑄, 𝑃 ;𝐸∗) such that the sum over all participants

𝑝 ∈ 𝑃 of the rank of team 𝑓 (𝜇∗𝑝 ) for participant 𝑝 is minimized;

5 Return the allocation 𝐴 such that 𝑝 is allocated to team 𝑓 (𝑞) for each (𝑞, 𝑝) ∈ 𝜇∗;

to copies of team 1, the vertices 2, 5 ∈ 𝑄 correspond to copies of team 2, and the vertices 3, 6 ∈ 𝑄
correspond to copies of team 3.

It is clear that the allocation produced by Algorithm 1 is balanced. To establish Theorem 3.2,

we prove the remaining properties of the algorithm, including its polynomial running time, in the

following three lemmas.

Lemma 3.4. The output allocation 𝐴 of Algorithm 1 is EF[1,1].

Proof. By definition of EF[1,1], we need to show that, for all distinct 𝑖, 𝑗 ∈ 𝑇 , we have 𝑣𝑖 (𝐴𝑖 \𝑋 ) ≥
𝑣𝑖 (𝐴 𝑗 \ 𝑌 ) for some 𝑋 ⊆ 𝐴𝑖 and 𝑌 ⊆ 𝐴 𝑗 with |𝑋 |, |𝑌 | ≤ 1. The statement holds trivially if𝑚 ≤ 𝑛

since each team receives at most one participant, so assume that 𝑚 > 𝑛. Fix arbitrary distinct

𝑖, 𝑗 ∈ 𝑇 . We consider three cases based on the sizes of 𝐴𝑖 and 𝐴 𝑗 . (In what follows, 𝜇 and 𝜇∗ are as
defined in Algorithm 1.)

First, suppose that |𝐴𝑖 | = |𝐴 𝑗 |. Let 𝑘 B |𝐴𝑖 | ≥ 1. Then,

𝑣𝑖 (𝐴𝑖 \ {𝜇∗𝑛 (𝑘−1)+𝑖 }) =
𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇∗𝑛 (ℓ−1)+𝑖 )

=

𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇𝑛 (ℓ−1)+𝑖 )

≥
𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇𝑛ℓ+𝑗 ) =
𝑘∑︁
ℓ=2

𝑣𝑖 (𝜇𝑛 (ℓ−1)+𝑗 ) =
𝑘∑︁
ℓ=2

𝑣𝑖 (𝜇∗𝑛 (ℓ−1)+𝑗 ) = 𝑣𝑖 (𝐴 𝑗 \ {𝜇∗𝑗 }),

where 𝑣𝑖 (𝜇𝑛 (ℓ−1)+𝑖 ) ≥ 𝑣𝑖 (𝜇𝑛ℓ+𝑗 ) holds because otherwise the weight of the edge in 𝜇 adjacent to

vertex 𝑛(ℓ − 1) + 𝑖 ∈ 𝑄 can be increased without decreasing the weights of the edges adjacent to

vertices 1, 2, . . . , 𝑛(ℓ − 1) + 𝑖 − 1 ∈ 𝑄 , contradicting the definition of 𝜇.

Next, suppose that |𝐴𝑖 | > |𝐴 𝑗 |; in particular, it must be that 𝑖 < 𝑗 . Let |𝐴𝑖 | = 𝑘 and |𝐴 𝑗 | = 𝑘 − 1.
Applying a similar argument as in the case |𝐴𝑖 | = |𝐴 𝑗 |, we have

𝑣𝑖 (𝐴𝑖 \ {𝜇∗𝑛 (𝑘−1)+𝑖 }) =
𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇∗𝑛 (ℓ−1)+𝑖 )

=

𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇𝑛 (ℓ−1)+𝑖 ) ≥
𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇𝑛 (ℓ−1)+𝑗 ) =
𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇∗𝑛 (ℓ−1)+𝑗 ) = 𝑣𝑖 (𝐴 𝑗 ).
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Finally, suppose that |𝐴𝑖 | < |𝐴 𝑗 |; in particular, it must be that 𝑖 > 𝑗 . Let |𝐴𝑖 | = 𝑘 − 1 and |𝐴 𝑗 | = 𝑘 .

Applying a similar argument once more, we have

𝑣𝑖 (𝐴𝑖 ) =
𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇∗𝑛 (ℓ−1)+𝑖 )

=

𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇𝑛 (ℓ−1)+𝑖 )

≥
𝑘−1∑︁
ℓ=1

𝑣𝑖 (𝜇𝑛ℓ+𝑗 ) =
𝑘∑︁
ℓ=2

𝑣𝑖 (𝜇𝑛 (ℓ−1)+𝑗 ) =
𝑘∑︁
ℓ=2

𝑣𝑖 (𝜇∗𝑛 (ℓ−1)+𝑗 ) = 𝑣𝑖 (𝐴 𝑗 \ {𝜇∗𝑗 }).

Hence, in all three cases, the allocation 𝐴 is EF[1,1]. □

Lemma 3.5. The output allocation 𝐴 of Algorithm 1 is swap stable.

Proof. Let us consider a swap between participants 𝜇∗𝑞 and 𝜇
∗
𝑟 , where𝑞, 𝑟 ∈ 𝑄 with𝑞 < 𝑟 . Suppose

that this swap is possibly a beneficial swap, i.e., 𝑣 𝑓 (𝑞) (𝜇∗𝑞) ≤ 𝑣 𝑓 (𝑞) (𝜇∗𝑟 ), 𝑣 𝑓 (𝑟 ) (𝜇∗𝑟 ) ≤ 𝑣 𝑓 (𝑟 ) (𝜇∗𝑞),
𝑓 (𝑞) ≾𝜇∗𝑞 𝑓 (𝑟 ), and 𝑓 (𝑟 ) ≾𝜇∗𝑟 𝑓 (𝑞). We will show that this swap cannot make any of the involved

parties better off. Denote by 𝜇∗∗ the matching that results from this swap.

If 𝑣 𝑓 (𝑞) (𝜇∗𝑞) < 𝑣 𝑓 (𝑞) (𝜇∗𝑟 ), the matching 𝜇 can be improved by using 𝜇∗∗ instead, a contradiction.
So 𝑣 𝑓 (𝑞) (𝜇∗𝑞) = 𝑣 𝑓 (𝑞) (𝜇∗𝑟 ). Similarly, if 𝑣 𝑓 (𝑟 ) (𝜇∗𝑟 ) < 𝑣 𝑓 (𝑟 ) (𝜇∗𝑞), then because 𝑣 𝑓 (𝑞) (𝜇∗𝑞) = 𝑣 𝑓 (𝑞) (𝜇∗𝑟 ), the
matching 𝜇 can again be improved by using 𝜇∗∗ instead, a contradiction. So 𝑣 𝑓 (𝑟 ) (𝜇∗𝑟 ) = 𝑣 𝑓 (𝑟 ) (𝜇∗𝑞).
Hence, the matching 𝜇∗∗ after the swap remains a feasible perfect matching in𝐺∗. As 𝜇∗ minimizes

the sum of the participants’ rank for teams among the perfect matchings in𝐺∗, we get 𝑓 (𝑞) ∼𝜇∗𝑞 𝑓 (𝑟 )
and 𝑓 (𝑟 ) ∼𝜇∗𝑟 𝑓 (𝑞). Therefore, the swap is not a beneficial swap, and the allocation 𝐴 is swap

stable. □

Lemma 3.6. Algorithm 1 can be implemented to run in polynomial time.

Proof. We first focus on computing the matching 𝜇 in Line 2. The weight𝑤 (1, 𝜇1) can be found

by simply taking the largest weight of an edge adjacent to vertex 1 ∈ 𝑄 in 𝐺 . Given the weights

𝑤 (1, 𝜇1), . . . ,𝑤 (𝑖 − 1, 𝜇𝑖−1), to determine𝑤 (𝑖, 𝜇𝑖 ), we delete all edges (𝑞, 𝑝) with 1 ≤ 𝑞 ≤ 𝑖 − 1 such
that𝑤 (𝑞, 𝑝) ≠ 𝑤 (𝑞, 𝜇𝑞) from 𝐺 , change the weight of all edges (𝑞, 𝑝) with 𝑖 + 1 ≤ 𝑞 ≤ 𝑚 to 0, and

compute a maximum-weight perfect matching in the resulting graph. Note that this matching can

be found in time 𝑂 (𝑚3) [Tomizawa, 1971].

Once we have𝑤 (1, 𝜇1), . . . ,𝑤 (𝑚, 𝜇𝑚), we can construct 𝐺∗ in Line 4 by keeping only the edges

in𝐺 such that𝑤 (𝑞, 𝑝) = 𝑤 (𝑞, 𝜇𝑞). Finally, to compute 𝜇∗, we reassign the weight of each edge (𝑞, 𝑝)
in𝐺∗ to be the rank of participant 𝑝 for team 𝑓 (𝑞) and find a minimum-weight perfect matching in

𝐺∗; again, this matching can be found in time 𝑂 (𝑚3). □

Next, we observe two ways in which Theorem 3.2 cannot be improved: the condition EF[1,1]

cannot be strengthened to EF1, and it is not possible to add individual stability to the list of

guarantees. In fact, the first observation was also made by Shoshan et al. [2023], although their

work only deals with one-sided preferences.

Proposition 3.7. Even for two teams with identical valuations, there does not necessarily exist a
balanced EF1 allocation.

Proof. Consider an instance with 𝑛 =𝑚 = 2 such that both teams have value 1 for 𝑝1 and −1
for 𝑝2. Clearly, no balanced allocation is EF1. □
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Algorithm 2: For computing an EF1, swap stable, and individually stable allocation

1 Partition 𝑃 into 𝑃+ B {𝑝 ∈ 𝑃 | max𝑖∈𝑇 𝑣𝑖 (𝑝) ≥ 0} and 𝑃− B {𝑝 ∈ 𝑃 | max𝑖∈𝑇 𝑣𝑖 (𝑝) < 0};
2 Let 𝑃+ consist of 𝑃+ together with (𝑛 − 1) |𝑃+ | + 𝑛 dummy participants, where each dummy

participant yields value 0 to every team and is indifferent between all teams;

3 Let 𝑃− consist of 𝑃− together with (𝑛 − 1) |𝑃− | + 𝑛 dummy participants, where each dummy

participant yields value 0 to every team and is indifferent between all teams;

4 Let 𝐴+ be the allocation obtained by executing Algorithm 1 on 𝑃+ with the teams in the

forward order 1, 2, . . . , 𝑛;

5 Let 𝐴− be the allocation obtained by executing Algorithm 1 on 𝑃− with the teams in the

backward order 𝑛, 𝑛 − 1, . . . , 1;
6 Return the allocation 𝐴 which is the union of 𝐴+ and 𝐴− with the dummy participants

removed;

Proposition 3.8. Even for two teams and nonnegative-value participants, there does not necessarily
exist a balanced and individually stable allocation.

Proof. Consider an instance with 𝑛 =𝑚 = 2 such that team 1 has value 1 for each participant,

team 2 has value 0 for each participant, and both participants strictly prefer team 1 to team 2. The

only individually stable allocation assigns both participants to team 1, but this allocation is not

balanced. □

In spite of Propositions 3.7 and 3.8, we show next that if we give up balancedness, we can

attain EF1, swap stability, and individual stability simultaneously. To this end, we combine our

Algorithm 1 with the double round-robin algorithm introduced by Aziz et al. [2022]. In the first phase,

the participants who yield nonnegative value to at least one team are allocated by Algorithm 1 in

the forward order of the teams, while in the second phase, the remaining participants are allocated

by Algorithm 1 in the backward order of the teams. Intuitively, EF1 is guaranteed because, for each

pair of teams 𝑖 and 𝑗 with 𝑖 < 𝑗 , 𝑖 does not envy 𝑗 in the first phase whereas 𝑗 does not envy 𝑖 in

the second phase. Moreover, we add a sufficient number of dummy participants, who yield value

0 to every team and are indifferent between all teams, in order to guarantee individual stability.

This leads to each team receiving at least one dummy participant, and a beneficial deviation in the

resulting situation can be captured by a beneficial swap between the deviating participant and a

dummy participant. The algorithm is formally described as Algorithm 2.

Theorem 3.9. For any instance, Algorithm 2 returns an EF1, swap stable, and individually stable
allocation in polynomial time.

Proof. We show that Algorithm 2 has the desired properties. Since Algorithm 1 runs in polyno-

mial time, so does Algorithm 2. Note that |𝑃+ | = 𝑛( |𝑃+ | + 1) and |𝑃− | = 𝑛( |𝑃− | + 1), so every team

has at least one dummy participant in each of 𝐴+ and 𝐴− . Also, as Algorithm 1 outputs a swap

stable allocation, each of the allocations 𝐴+ and 𝐴− is swap stable. In addition, each participant

𝑝 ∈ 𝑃+ is allocated to a team that values her nonnegatively, i.e., 𝑣𝑖 (𝑝) ≥ 0 for all 𝑖 ∈ 𝑇 and 𝑝 ∈ 𝐴+𝑖 .
Indeed, if 𝑣 𝑗 (𝑝) ≥ 0 > 𝑣𝑖 (𝑝) for some 𝑖, 𝑗 ∈ 𝑇 and 𝑝 ∈ 𝐴+𝑖 , the swap between 𝑝 and a dummy

participant in 𝐴+𝑗 would lead to a better matching than 𝜇 in Algorithm 1, a contradiction.

We now prove that the allocation𝐴 returned by Algorithm 2 is EF1, swap stable, and individually

stable.
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EF1. Consider any pair of teams 𝑖 and 𝑗 where 𝑖 < 𝑗 .

First, consider 𝑖’s envy for 𝑗 . In the first phase, 𝑖 has priority over 𝑗 and both teams receive the

same number of participants, so 𝑖 does not envy 𝑗 with respect to 𝐴+ (i.e., 𝑣𝑖 (𝐴+𝑖 ) ≥ 𝑣𝑖 (𝐴+𝑗 )). Also,
as𝐴− is EF[1,1], there exist 𝑋 ⊆ 𝐴−𝑖 and 𝑌 ⊆ 𝐴−𝑗 such that |𝑋 |, |𝑌 | ≤ 1 and 𝑣𝑖 (𝐴−𝑖 \𝑋 ) ≥ 𝑣𝑖 (𝐴−𝑗 \𝑌 ).
Hence, we obtain

𝑣𝑖 (𝐴𝑖 \ 𝑋 ) = 𝑣𝑖 (𝐴+𝑖 ) + 𝑣𝑖 (𝐴−𝑖 \ 𝑋 ) ≥ 𝑣𝑖 (𝐴+𝑗 ) + 𝑣𝑖 (𝐴−𝑗 \ 𝑌 ) ≥ 𝑣𝑖 (𝐴+𝑗 ) + 𝑣𝑖 (𝐴−𝑗 ) = 𝑣𝑖 (𝐴 𝑗 );
here, the second inequality holds because each participant in 𝑌 yields negative value to every team.

Thus, 𝑖 does not envy 𝑗 by more than one participant.

Next, consider 𝑗 ’s envy for 𝑖 . In the second phase, 𝑗 has priority over 𝑖 and both teams receive the

same number of participants, so 𝑗 does not envy 𝑖 with respect to𝐴− (i.e., 𝑣 𝑗 (𝐴−𝑗 ) ≥ 𝑣 𝑗 (𝐴−𝑖 )). Also, as
𝐴+ is EF[1,1], there exist𝑋 ′ ⊆ 𝐴+𝑗 and𝑌

′ ⊆ 𝐴+𝑖 such that |𝑋 ′ |, |𝑌 ′ | ≤ 1 and 𝑣 𝑗 (𝐴+𝑗 \𝑋 ′) ≥ 𝑣 𝑗 (𝐴+𝑖 \𝑌 ′).
Note that 𝑣 𝑗 (𝑋 ′) ≥ 0 since 𝑗 only receives participants with nonnegative value in the first phase.

Hence, we obtain

𝑣 𝑗 (𝐴 𝑗 ) = 𝑣 𝑗 (𝐴+𝑗 ) + 𝑣 𝑗 (𝐴−𝑗 ) ≥ 𝑣 𝑗 (𝐴+𝑗 \ 𝑋 ′) + 𝑣 𝑗 (𝐴−𝑗 ) ≥ 𝑣 𝑗 (𝐴+𝑖 \ 𝑌 ′) + 𝑣 𝑗 (𝐴−𝑖 ) = 𝑣 𝑗 (𝐴𝑖 \ 𝑌 ′).
Thus, 𝑗 does not envy 𝑖 by more than one participant.

Swap stability. Suppose to the contrary that the swap between some 𝑝 ∈ 𝐴𝑖 and 𝑞 ∈ 𝐴 𝑗 is a

beneficial swap in𝐴. Since each of𝐴+ and𝐴− is swap stable, it cannot be that 𝑝, 𝑞 ∈ 𝑃+ or 𝑝, 𝑞 ∈ 𝑃− .
Thus, without loss of generality, we may assume that 𝑝 ∈ 𝑃+ and 𝑞 ∈ 𝑃− . We have 𝑣𝑖 (𝑝) ≥ 0 but

𝑣𝑖 (𝑞) < 0, which means that the swap is not beneficial for team 𝑖 , a contradiction.

Individual stability. Suppose to the contrary that there is a beneficial deviation of participant 𝑝

from team 𝑖 to team 𝑗 in 𝐴. If 𝑝 ∈ 𝑃+ (resp., 𝑝 ∈ 𝑃−), the swap between 𝑝 and a dummy participant

in 𝐴+𝑗 (resp., 𝐴
−
𝑗 ) would be a beneficial swap in 𝐴+ (resp., in 𝐴−), contradicting the swap stability of

𝐴+ (resp., 𝐴−). □

4 PARETO OPTIMALITY
In this section, we turn our attention to Pareto optimality, which is a stronger requirement than

both swap stability and individual stability. Firstly, while it is easy to check whether an allocation

is swap stable or individually stable by checking for all (polynomial number of) possible beneficial

swaps or deviations, the same is not true for PO.

Theorem 4.1. Deciding whether an allocation is PO or not is coNP-complete, even for two teams
with identical valuations, nonnegative-value participants, and a balanced allocation.

Proof. Checking that an allocation is Pareto dominated by another given allocation can be done

in polynomial time, so the problem is in coNP. To prove coNP-hardness, we reduce from Subset

Sum. An instance of Subset Sum consists of positive integers 𝑏1, . . . , 𝑏𝑟 and 𝑠 ; it is a Yes-instance if

and only if the sum of some subset of the 𝑏𝑖 ’s is exactly 𝑠 .

Given an instance (𝑏1, . . . , 𝑏𝑟 ; 𝑠) of Subset Sum, we create two teams with identical valuations

for 2𝑟 participants; the values are 𝑏1, . . . , 𝑏𝑟 , 𝑠, 0, 0, . . . , 0, where 0 occurs 𝑟 − 1 times. Participant 𝑝𝑟+1
(with value 𝑠) prefers team 1 to team 2, while all other participants prefer team 2 to team 1. Consider

a balanced allocation in which the first 𝑟 participants are in team 1 while the other 𝑟 participants

are in team 2. We claim that this allocation admits a Pareto improvement if and only if (𝑏1, . . . , 𝑏𝑟 ; 𝑠)
is a Yes-instance. Indeed, if

∑
𝑖∈𝐼 𝑏𝑖 = 𝑠 for some 𝐼 ⊆ [𝑟 ], then exchanging participants 𝑝𝑖 for

𝑖 ∈ 𝐼 with 𝑝𝑟+1 yields a Pareto improvement: both teams are indifferent while all participants

involved are better off. For the converse direction, note that an exchange that yields a Pareto

improvement cannot involve 𝑝𝑟+2, . . . , 𝑝2𝑟 , so such an exchange must involve 𝑝𝑟+1 along with a
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subset 𝑃 ′ ⊆ {𝑝1, . . . , 𝑝𝑟 }. Since the teams have identical valuations, this exchange can be a Pareto

improvement only when the 𝑏𝑖 ’s corresponding to 𝑃
′
sum up to exactly 𝑠 . □

Note that even though the same decision problem is also coNP-complete for two teams with

one-sided preferences [Aziz et al., 2019, Thm. 1], it becomes trivial for any number of teams with

identical valuations and one-sided preferences, because every allocation is PO in that case. Also, the

proof of Theorem 4.1 can be adapted to show a similar hardness for PO within the set of balanced

allocations. Indeed, we can use the same instance with the exception that all participants in team 2

prefer team 1 to team 2. Then, there exists a Pareto improvement respecting the balancedness

constraint if and only if the instance of Subset Sum is a Yes-instance.

In light of Theorem 4.1, we cannot hope to reach a PO allocation in polynomial time by starting

with an arbitrary allocation and iteratively finding Pareto improvements. However, a PO allocation

can be efficiently computed by simply assigning each participant to a team with the highest value

for her, breaking ties in favor of a team that the participant prefers most. Can we attain PO along

with fairness for the teams? The next example shows that round-robin-based algorithms such as

Algorithms 1 and 2 do not work, even for two teams with identical valuations and nonnegative-value

participants.

Example 4.2. Consider the following instance with 𝑛 = 2 and𝑚 = 8:

• 𝑣𝑖 (𝑝1) = 𝑣𝑖 (𝑝2) = 4, 𝑣𝑖 (𝑝3) = 𝑣𝑖 (𝑝4) = 3, 𝑣𝑖 (𝑝5) = 𝑣𝑖 (𝑝6) = 2, and 𝑣𝑖 (𝑝7) = 𝑣𝑖 (𝑝8) = 1 for

𝑖 ∈ {1, 2};
• 1 ≻𝑝 𝑗

2 for 𝑗 ∈ {1, 2, 7, 8} and 2 ≻𝑝 𝑗
1 for 𝑗 ∈ {3, 4, 5, 6}.

Given this instance, Algorithms 1 and 2 return an allocation 𝐴 that assigns to each team exactly

one participant from each of the sets {𝑝1, 𝑝2}, {𝑝3, 𝑝4}, {𝑝5, 𝑝6}, and {𝑝7, 𝑝8}. However, 𝐴 is Pareto

dominated by the allocation 𝐴′ = ({𝑝1, 𝑝2, 𝑝7, 𝑝8}, {𝑝3, 𝑝4, 𝑝5, 𝑝6}).

Nevertheless, for two teams and arbitrary-value participants, we can find an EF1 and PO allocation

by extending the generalized adjusted winner procedure of Aziz et al. [2022]. The algorithm operates

in a similar way as Aziz et al.’s algorithm, but we need to employ a tie-breaking rule among

participants with the same ratio between the teams’ values.

Theorem 4.3. Given any instance with two teams, there exists an algorithm that outputs an
allocation that is EF1, PO, and team-PO in time 𝑂 (𝑚2).

Proof. The algorithm is shown as Algorithm 3. Since it is a version of the generalized adjusted

winner procedure with specific tie-breaking, EF1, team-PO, and the running time follow from the

work of Aziz et al. [2022]. In particular, the tie-breaking in Line 4 takes time 𝑂 (𝑚) and does not

add to the overall running time.

It remains to show that the output allocation is PO. First, participants with zero value for both

teams are already assigned to a team that they prefer, and such participants do not affect the utility

of either team no matter which team they are assigned to, so we may safely ignore them. We

claim that at any point from Line 5 onward, the allocation 𝐴 in the algorithm is PO. Suppose to

the contrary that there exists a Pareto improvement 𝐴′ = (𝐴′
1
, 𝐴′

2
) of 𝐴. Since this intermediate

allocation 𝐴 is team-PO [Aziz et al., 2022], we have

𝑣1 (𝐴1) = 𝑣1 (𝐴′1) and 𝑣2 (𝐴2) = 𝑣2 (𝐴′2).
We can assume that participants in 𝑃∗

1
and 𝑃∗

2
stay in team 1 and 2, respectively, because transferring

such a participant makes neither team better off and at least one team worse off, contradicting team-

PO. Thus, in the following argument, we assume that only participants in 𝑃+∪𝑃− are exchanged. In
addition, we observe from the proof of Aziz et al. [2022] that, for some value 𝛼 , |𝑣1 (𝑝) |/|𝑣2 (𝑝) | = 𝛼
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Algorithm 3: For computing an EF1 and PO allocation for two teams

1 Assign each participant with zero value for both teams to a team that she prefers (breaking

ties arbitrarily), and assume from now on that 𝑃 is the set of remaining participants;

2 Let 𝑃∗
1
= {𝑝 ∈ 𝑃 | 𝑣1 (𝑝) ≥ 0, 𝑣2 (𝑝) ≤ 0} and 𝑃∗

2
= {𝑝 ∈ 𝑃 | 𝑣1 (𝑝) ≤ 0, 𝑣2 (𝑝) ≥ 0};

3 Let 𝑃+ = {𝑝 ∈ 𝑃 | 𝑣1 (𝑝) > 0, 𝑣2 (𝑝) > 0} and 𝑃− = {𝑝 ∈ 𝑃 | 𝑣1 (𝑝) < 0, 𝑣2 (𝑝) < 0};
4 Assume without loss of generality that the participants in 𝑃+ ∪ 𝑃− are 𝑝1, 𝑝2, . . . , 𝑝𝑟 , and

relabel them so that |𝑣1 (𝑝1) |/|𝑣2 (𝑝1) | ≤ |𝑣1 (𝑝2) |/|𝑣2 (𝑝2) | ≤ · · · ≤ |𝑣1 (𝑝𝑟 ) |/|𝑣2 (𝑝𝑟 ) |.
Moreover, for participants with the same ratio, place them in the following order:

(1) those in 𝑃+ who strictly prefer team 2 and those in 𝑃− who strictly prefer team 1;

(2) those in 𝑃+ ∪ 𝑃− who like both teams equally;

(3) those in 𝑃+ who strictly prefer team 1 and those in 𝑃− who strictly prefer team 2;

5 Let (𝐴1, 𝐴2) ← (𝑃+ ∪ 𝑃∗1 , 𝑃− ∪ 𝑃∗2 );
6 for 𝑖 ← 1, 2, . . . , 𝑟 do
7 if team 2 does not envy team 1 by more than one participant then break;
8 if 𝑝𝑖 ∈ 𝑃+ thenMove participant 𝑝𝑖 from team 1 to team 2 (i.e., 𝐴1 ← 𝐴1 \ {𝑝𝑖 } and

𝐴2 ← 𝐴2 ∪ {𝑝𝑖 });
9 else Move participant 𝑝𝑖 from team 2 to team 1 (i.e., 𝐴1 ← 𝐴1 ∪ {𝑝𝑖 } and

𝐴2 ← 𝐴2 \ {𝑝𝑖 });
10 return (𝐴1, 𝐴2);

|𝑣1 (𝑝) |/|𝑣2 (𝑝) | < 𝛼 |𝑣1 (𝑝) |/|𝑣2 (𝑝) | = 𝛼 |𝑣1 (𝑝) |/|𝑣2 (𝑝) | > 𝛼

𝑝 ∈ 𝑃+ and 2 ≻𝑝 1

𝑝 ∈ 𝑃− and 1 ≻𝑝 2

𝑝 ∈ 𝑃+ and 1 ∼𝑝 2

𝑝 ∈ 𝑃− and 1 ∼𝑝 2

𝑝 ∈ 𝑃+ and 1 ≻𝑝 2

𝑝 ∈ 𝑃− and 2 ≻𝑝 1

Case 1 Case 2 Case 3

Fig. 1. The order of participants in 𝑃+ ∪ 𝑃− in the proof of Theorem 4.3.

for all 𝑝 ∈ (𝐴1 ∩𝐴′2) ∪ (𝐴2 ∩𝐴′1) (i.e., the exchanged participants between 𝐴 and 𝐴′). We derive

a contradiction by splitting the argument according to 𝑝𝑖 , the last participant we moved in the

for-loop (see Figure 1). If we did not move any participant, we can apply the argument in Case 1.

Case 1. Suppose that one of the following holds:
(i) |𝑣1 (𝑝𝑖 ) |/|𝑣2 (𝑝𝑖 ) | < 𝛼 ;

(ii) |𝑣1 (𝑝𝑖 ) |/|𝑣2 (𝑝𝑖 ) | = 𝛼 and 𝑝𝑖 ∈ 𝑃+ with 2 ≻𝑝𝑖 1; or
(iii) |𝑣1 (𝑝𝑖 ) |/|𝑣2 (𝑝𝑖 ) | = 𝛼 and 𝑝𝑖 ∈ 𝑃− with 1 ≻𝑝𝑖 2.

We see that every participant 𝑝 in 𝐴1 ∩ 𝑃− (resp., 𝐴2 ∩ 𝑃+) with the ratio |𝑣1 (𝑝) |/|𝑣2 (𝑝) | = 𝛼 , if

exists, strictly prefers team 1 (resp., team 2), so such a participant cannot be exchanged for a Pareto

improvement. Thus, 𝐴1 ∩𝐴′2 (resp., 𝐴2 ∩𝐴′1) consists only of participants in 𝑃+ (resp., 𝑃−). Because
(𝐴1 ∩𝐴′2) ∪ (𝐴2 ∩𝐴′1) is nonempty, the utility of team 1 is lower in 𝐴′ than in 𝐴, which implies

that 𝐴′ cannot be a Pareto improvement.

Case 2. Suppose that |𝑣1 (𝑝𝑖 ) |/|𝑣2 (𝑝𝑖 ) | = 𝛼 , 𝑝𝑖 ∈ 𝑃+ ∪ 𝑃− , and 1 ∼𝑝𝑖 2. Every participant 𝑝 in

𝐴1 ∩ (𝑃+ ∪ 𝑃−) with the ratio 𝛼 weakly prefers team 1, while every 𝑝 in 𝐴2 ∩ (𝑃+ ∪ 𝑃−) with the
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ratio 𝛼 weakly prefers team 2. Note that any participant in (𝐴1 ∩𝐴′2) ∪ (𝐴2 ∩𝐴′1) likes both teams

equally, because participants in 𝑃+ ∪ 𝑃− with ratio 𝛼 and a strict preference are already allocated

to their preferred team. This together with the team-PO of 𝐴 implies that no participant is better

off in 𝐴′ than in 𝐴. Thus, 𝐴′ is not a Pareto improvement.

Case 3. This case is similar to Case 1. Suppose that one of the following holds:

(i) |𝑣1 (𝑝𝑖 ) |/|𝑣2 (𝑝𝑖 ) | > 𝛼 ;

(ii) |𝑣1 (𝑝𝑖 ) |/|𝑣2 (𝑝𝑖 ) | = 𝛼 and 𝑝𝑖 ∈ 𝑃+ with 1 ≻𝑝𝑖 2; or
(iii) |𝑣1 (𝑝𝑖 ) |/|𝑣2 (𝑝𝑖 ) | = 𝛼 and 𝑝𝑖 ∈ 𝑃− with 2 ≻𝑝𝑖 1.

We see that every participant 𝑝 in 𝐴1 ∩ 𝑃+ (resp., 𝐴2 ∩ 𝑃−) with the ratio 𝛼 , if exists, strictly prefers

team 1 (resp., team 2), so such a participant cannot be exchanged for a Pareto improvement. Thus,

𝐴1∩𝐴′2 (resp.,𝐴2∩𝐴′1) consists only of participants in 𝑃− (resp., 𝑃+). Because (𝐴1∩𝐴′2) ∪ (𝐴2∩𝐴′1)
is nonempty, the utility of team 2 is lower in 𝐴′ than in 𝐴, which implies that 𝐴′ cannot be a Pareto
improvement.

In each of the three cases, we arrive at a contradiction. Therefore, we conclude that 𝐴 is PO. □

Although EF1, PO, and team-PO can be guaranteed simultaneously in the case of two teams, EF1

and participant-PO are already incompatible in this case.

Proposition 4.4. Even for two teams with identical valuations and nonnegative-value participants,
there does not necessarily exist an EF1 and participant-PO allocation.

Proof. Consider an instance with 𝑛 = 2 and𝑚 = 4 such that each team has value 1 for each

participant and every participant prefers team 1 to team 2. The only participant-PO allocation

assigns all participants to team 1, but this allocation is not EF1. □

A similar counterexample holds for balanced allocations if we consider participant-PO within

the set of balanced allocations. Specifically, consider an instance with 𝑛 = 2 and𝑚 = 4 such that

each team has value 0 for each of two participants who prefer team 1, and value 1 for each of

two participants who prefer team 2. The unique allocation that is participant-PO within the set of

balanced allocations assigns the first two participants to team 1 and the last two participants to

team 2, but this allocation is not EF1.

Note also that since PO is a stronger notion than individual stability, Proposition 3.8 implies that

we cannot guarantee PO and balancedness simultaneously. While one could ask whether there

always exists a balanced allocation that is EF1 and PO within the set of balanced allocations, such a

question remains unsolved even for one-sided preferences.
11

Wenowmove on to the general settingwhere the number of teams can be arbitrary. Unfortunately,

even for nonpositive-value participants and one-sided preferences, it is unknown whether EF1 and

PO can always be satisfied together [Ebadian et al., 2022, Garg et al., 2022]. We therefore restrict

our attention to nonnegative-value participants in the remainder of this section. By building upon

a well-known result of Caragiannis et al. [2019], we can establish the existence of an EF1 and

PO allocation. For any allocation 𝐴, its Nash welfare is defined as the product

∏
𝑖∈𝑇 𝑣𝑖 (𝐴𝑖 ). An

allocation is said to be a maximum Nash welfare (MNW) allocation if it maximizes the Nash welfare

among all allocations.
12

Theorem 4.5. For any instance with nonnegative-value participants, there exists an EF1 and PO
allocation.
11
Shoshan et al. [2023] explored a related question with category constraints but only addressed the case 𝑛 = 2.

12
If the maximum possible Nash welfare is 0, an MNW allocation should yield nonzero utility to the largest possible number

of teams and, subject to that, maximize the product of utilities of these teams.
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Proof. LetW be the set of all MNW allocations, and let𝐴 be an allocation that is PO withinW—

such an allocation must exist because otherwise there would be an infinite sequence of Pareto

improvements inW. It is known that every MNW allocation is EF1 [Caragiannis et al., 2019], so 𝐴

is EF1. We claim that 𝐴 is PO within the set of all allocations. Suppose to the contrary that there

is a Pareto improvement 𝐴′ of 𝐴. Since 𝑣𝑖 (𝐴′𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ) for all 𝑖 ∈ 𝑇 , 𝐴′ must also be an MNW

allocation. However, this contradicts the assumption that 𝐴 is PO withinW. □

Given Theorem 4.5, a natural question is whether there exists a polynomial-time algorithm

that computes an allocation guaranteed by the theorem. However, this question is open even for

one-sided preferences.
13
Next, we demonstrate that, in two special cases, such an algorithm exists.

The first case is when the teams have binary valuations, meaning that each team has value either 0

or 1 for each participant. In this case, it turns out that Algorithm 2 already computes an EF1 and

PO allocation in polynomial time. (With binary valuations, the set 𝑃− in Algorithm 2 is empty, so

the algorithm can be simplified.) Note that for one-sided preferences and binary valuations, an

MNW allocation can be found in polynomial time [Barman et al., 2018b, Darmann and Schauer,

2015], and such an allocation is guaranteed to be EF1 and PO [Caragiannis et al., 2019].

Theorem 4.6. For any instance with binary valuations, Algorithm 2 computes an EF1 and PO
allocation in polynomial time.

Proof. Since EF1 and polynomial-time computability were already shown in the proof of Theo-

rem 3.9, it is sufficient to establish PO.

Let 𝐴 be the outcome of Algorithm 2, and suppose to the contrary that there is a Pareto improve-

ment 𝐴′ of 𝐴. For each participant 𝑝 , we denote by 𝐴(𝑝) and 𝐴′ (𝑝) the team that 𝑝 is allocated

to in 𝐴 and 𝐴′, respectively. Note that 𝐴′ (𝑝) ≿𝑝 𝐴(𝑝) for all 𝑝 ∈ 𝑃 and 𝑣𝑖 (𝐴′𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ) for all
𝑖 ∈ 𝑇 . We claim that 𝑣𝐴(𝑝 ) (𝑝) ≥ 𝑣𝐴′ (𝑝 ) (𝑝) for each participant 𝑝 . Indeed, if this is not the case,

then 𝑣𝐴(𝑝 ) (𝑝) = 0 and 𝑣𝐴′ (𝑝 ) (𝑝) = 1 for some 𝑝; we know that 𝐴′ (𝑝) ≿𝑝 𝐴(𝑝) for this 𝑝 . However,
a similar proof as that for individual stability in Theorem 3.9 shows that such a deviation by 𝑝

from 𝐴(𝑝) to 𝐴′ (𝑝), which hurts neither 𝑝 nor 𝐴(𝑝) and strictly helps 𝐴′ (𝑝), cannot exist, thereby
proving the claim.

Now, since 𝐴′ is a Pareto improvement of 𝐴, we have∑︁
𝑝∈𝑃

𝑣𝐴(𝑝 ) (𝑝) =
∑︁
𝑖∈𝑇

𝑣𝑖 (𝐴𝑖 ) ≤
∑︁
𝑖∈𝑇

𝑣𝑖 (𝐴′𝑖 ) =
∑︁
𝑝∈𝑃

𝑣𝐴′ (𝑝 ) (𝑝).

Since 𝑣𝐴(𝑝 ) (𝑝) ≥ 𝑣𝐴′ (𝑝 ) (𝑝) for all 𝑝 ∈ 𝑃 , we must have 𝑣𝐴(𝑝 ) (𝑝) = 𝑣𝐴′ (𝑝 ) (𝑝) for all 𝑝 ∈ 𝑃 and

𝑣𝑖 (𝐴𝑖 ) = 𝑣𝑖 (𝐴′𝑖 ) for all 𝑖 ∈ 𝑇 . Thus, we can construct a better matching than 𝜇∗ in Algorithm 1 on

𝑃+ (Line 4 of Algorithm 2) by a round-robin sequence in which each team 𝑖 picks participants in 𝐴′𝑖
as early as possible, because the Pareto improvement makes no participant worse off and at least

one participant strictly better off. However, this contradicts the definition of 𝜇∗. □

Next, we focus on the case of three teams with identical valuations and specific participant

preferences.

Theorem 4.7. Suppose that there are 𝑛 = 3 teams with identical valuations, all participants yield
nonnegative value, and each participant prefers one team and is indifferent between the other two
teams. Then, there exists an algorithm that computes an EF1 and PO allocation in polynomial time.

Proof. The algorithm is shown as Algorithm 4, where for 𝑖 ∈ [3], we denote by 𝑆𝑖 the type

of participants who prefer team 𝑖 . It is clear that the algorithm runs in polynomial time. Since

13
A pseudopolynomial-time algorithm for this problem was given by Barman et al. [2018a].
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Algorithm 4: For computing an EF1 and PO allocation for three teams with the conditions

of Theorem 4.7

1 for 𝑖 ← 1, 2, 3 do
2 Assign each participant with zero value of type 𝑆𝑖 to team 𝑖 (where 𝑆𝑖 denotes the type of

participants who prefer team 𝑖);

3 while there is at least one unassigned participant do
4 Let 𝑖 be a team with the least current value. If there is more than one such team, choose a

team 𝑖 for which there is at least one unassigned participant of type 𝑆𝑖 , if possible;

5 if there is an unassigned participant of type 𝑆𝑖 then Assign any such participant to team 𝑖;

6 else if there is only one type of participants left then Assign any remaining participant to

team 𝑖;

7 else Denote the other two types by 𝑆 𝑗 and 𝑆𝑘 . Let 𝑓 (𝑆 𝑗 ) be the total value that team 𝑗

would receive if all unassigned participants of type 𝑆 𝑗 were assigned to it (in addition to

the already assigned participants in team 𝑗 ), and define 𝑓 (𝑆𝑘 ) analogously for team 𝑘 .

Assign a participant of the type with the higher 𝑓 -value to team 𝑖 , breaking ties

between types arbitrarily and breaking ties among participants in favor of higher-value

participants;

8 return the current allocation (𝐴1, 𝐴2, 𝐴3);

the algorithm always assigns a participant to a team 𝑖 with the least current value, no other team

envies 𝑖 by more than one participant at this point. Hence, the same is true for all pairs of teams

during the entire execution of the algorithm, which means that the returned allocation is EF1.
14

We now show that the allocation is PO. Assume without loss of generality that the types run out

in the order 𝑆1, 𝑆2, 𝑆3. In particular, team 1 may receive participants of all three types, team 2 may

only receive participants of type 𝑆2 and 𝑆3, and team 3 may only receive participants of type 𝑆3.

Suppose for contradiction that there exists a Pareto improvement 𝐴′ = (𝐴′
1
, 𝐴′

2
, 𝐴′

3
) of the output

allocation 𝐴. Denoting the common team valuation by 𝑣 , we have 𝑣 (𝐴𝑖 ) = 𝑣 (𝐴′𝑖 ) for all 𝑖 ∈ {1, 2, 3}.
Since all participants with zero value are already with their preferred team in 𝐴, they must remain

with their team in 𝐴′. Moreover, since 𝐴3 only contains participants of type 𝑆3 and 𝑣 (𝐴3) = 𝑣 (𝐴′
3
),

it must be that 𝐴3 = 𝐴′
3
. So, from 𝐴 to 𝐴′, some participants of type 𝑆3 are moved from 𝐴2 to 𝐴

′
1
,

while some participants of type 𝑆2 or 𝑆3 (at least one participant of type 𝑆2) are moved from 𝐴1 to

𝐴′
2
, where both sets of participants have the same total value. We will show that every participant

of type 𝑆2 in 𝐴1 has a strictly larger value than the total value of all participants of type 𝑆3 in 𝐴2.

This is sufficient to obtain the desired contradiction.

Consider the moment when the algorithm assigns the last participant 𝑝 of type 𝑆2 to team 1.

Since participants of type 𝑆3 run out after those of type 𝑆2, there is at least one participant of

type 𝑆3 available at this moment. The choice of the algorithm to assign a participant of type 𝑆2
to team 1 implies that 𝑓 (𝑆2) ≥ 𝑓 (𝑆3). After 𝑝’s assignment, 𝑓 (𝑆2) decreases by 𝑣 (𝑝), so it holds

that 𝑓 (𝑆3) − 𝑓 (𝑆2) ≤ 𝑣 (𝑝) at this point. Now, because participants of type 𝑆2 have not run out

before 𝑝’s assignment, the first assignment of a participant 𝑝 of type 𝑆3 to team 2 must occur after

𝑝’s assignment. Between 𝑝’s assignment and 𝑝’s assignment, some participants of type 𝑆3 may be

assigned to team 1—this only decreases 𝑓 (𝑆3). Hence, directly before 𝑝’s assignment, we still have

𝑓 (𝑆3) − 𝑓 (𝑆2) ≤ 𝑣 (𝑝). Moreover, at this point, the partial allocation 𝐴′′ satisfies 𝑣 (𝐴′′
2
) < 𝑣 (𝐴′′

3
) (if

14
Alternatively, the algorithm can be seen as a special case of Lipton et al. [2004]’s envy cycle elimination algorithm for

identical valuations.
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𝑣 (𝐴′′
2
) = 𝑣 (𝐴′′

3
), the algorithm should have assigned 𝑝 to team 3 due to the tie-breaking rule in Line 4),

and only participants of type 𝑆3 are left, i.e., 𝑣 (𝐴′′2 ) = 𝑓 (𝑆2). Therefore, the total value of participants
of type 𝑆3 assigned to team 2 is at most 𝑓 (𝑆3) − 𝑣 (𝐴′′3 ) < 𝑓 (𝑆3) − 𝑣 (𝐴′′2 ) = 𝑓 (𝑆3) − 𝑓 (𝑆2) ≤ 𝑣 (𝑝), i.e.,
this value is strictly less than 𝑣 (𝑝). On the other hand, by the tie-breaking on participants (Line 7),

every participant of type 𝑆2 assigned to team 1 has value at least 𝑣 (𝑝). This completes the proof. □

Finally, we provide a pseudopolynomial-time algorithm for the case where the number of teams

is constant.

Theorem 4.8. For any instance with a constant number of teams, each of which has a nonnegative
integer value for each participant, an EF1 and PO allocation can be computed in pseudopolynomial
time.

Proof. Let 𝑣max B max𝑖∈𝑇, 𝑝∈𝑃 𝑣𝑖 (𝑝). We construct a table 𝐻 which classifies all possible utility

vectors for teams that can be attained by allocating the first 𝑗 participants 𝑝1, . . . , 𝑝 𝑗 . The entry

𝐻 (𝒖, 𝑗) indicates whether there exists an allocation 𝐴 of participants 𝑝1, . . . , 𝑝 𝑗 such that 𝒖 =

(𝑣1 (𝐴1), . . . , 𝑣𝑛 (𝐴𝑛)). Moreover, if there exists such an allocation, 𝐻 (𝒖, 𝑗) is an allocation that

maximizes the participants’ happiness lexicographically with respect to the reverse participant

order (i.e., maximizes participant 𝑝 𝑗 ’s happiness, then maximizes participant 𝑝 𝑗−1’s happiness,
and so on) among such allocations. Note that the utility of a team for an allocation is an integer

belonging to the range [0, 𝑚 · 𝑣max]. Hence, the size of the table 𝐻 is 𝑂 (𝑚 · (1 +𝑚 · 𝑣max)𝑛), which
is pseudopolynomial when 𝑛 is a constant. We can fill in the entries of the table according to

the following recursive formula, where 𝜒𝑖 denotes the 𝑖th unit vector of length 𝑛, that is, the 𝑘th

coordinate is 1 if 𝑘 = 𝑖 and 0 otherwise.

• For 𝑗 = 0, the entry 𝐻 (𝒖, 𝑗) is (∅, . . . , ∅) if 𝒖 = (0, . . . , 0), and ⊥ otherwise.
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• For 𝑗 = 1, 2, . . . ,𝑚, the entry𝐻 (𝒖, 𝑗) is⊥ if𝐻 (𝒖−𝑣𝑖 (𝑝 𝑗 ) · 𝜒𝑖 , 𝑗−1) = ⊥ for all 𝑖 ∈ 𝑇 . Otherwise,
let 𝑖∗ be a team that 𝑝 𝑗 prefers themost among the teams 𝑖 such that𝐻 (𝒖−𝑣𝑖 (𝑝 𝑗 ) ·𝜒𝑖 , 𝑗−1) ≠ ⊥.
If there are multiple such teams, we select a team that yields a lexicographically optimal

allocation for 𝑝1, . . . , 𝑝 𝑗−1 with respect to the reverse participant order. Then, the entry is

the allocation such that 𝑝1, . . . , 𝑝 𝑗−1 are allocated as in 𝐻 (𝒖 − 𝑣𝑖∗ (𝑝 𝑗 ) · 𝜒𝑖∗ , 𝑗 − 1) while 𝑝 𝑗 is

allocated to 𝑖∗.

The entries 𝐻 (𝒖, 𝑗) can be computed in 𝑂 (𝑛𝑚) time each in a bottom-up manner, so we can

construct the table 𝐻 in𝑂 (𝑛𝑚2 · (1 +𝑚 · 𝑣max)𝑛) time. Now, by using the table, we can pick a utility

vector 𝒖∗ that corresponds to an MNW allocation (of all𝑚 participants). Similarly to the proof of

Theorem 4.5, we can then conclude that the allocation 𝐻 (𝒖∗,𝑚) is EF1 and PO. □

5 JUSTIFIED ENVY-FREENESS
In this section, we consider justified EF. Note that if𝑚 = 𝑛 and all participants yield nonnegative

value to every team, the existence of an EF1 and justified EF allocation follows from the celebrated

result in two-sided matching of Gale and Shapley [1962] (with arbitrary tie-breaking). We show

that, perhaps surprisingly, this guarantee cannot be extended to the case𝑚 > 𝑛.

Proposition 5.1. Even for two teams and nonnegative-value participants who prefer the same
team, there does not necessarily exist an EF1 and justified EF allocation.

Proof. Consider an instance with 𝑛 = 2 and𝑚 = 4 such that team 1 has value 3, 3, 2, 2 for the four

participants, respectively, team 2 has value 1, 1, 0, 0, respectively, and all participants strictly prefer

team 1 to team 2. Team 2 needs at least one of 𝑝1 and 𝑝2 in order for EF1 to be fulfilled—assume

15
The symbol ⊥ stands for a “null” value.
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participant 𝑎 participant 𝑏 participant 𝑐 𝑗 (𝑐 𝑗 ∈ 𝐶 ) participant 𝑝𝑤 (𝑤 ∈ 𝑉 )

Preferences 𝑠 ≻ 𝑑 ≻ · · · 𝑠 ≻ 𝑑 ≻ · · · arbitrary 𝑠 ≻ 𝑡𝜙 (𝑤) ≻ · · ·

team 𝑠 1 1 1 − 𝜀 1

Valuations team 𝑡𝑒 (𝑒 ∈ 𝐸) 0 0 0 1 or 0 (see caption)

team 𝑑 1 1 𝜀 𝜀

Table 2. Participant preferences and team valuations in the proof of Theorem 5.2. Team 𝑡𝑒 has value 1 for
participant 𝑝𝑤 if𝑤 is an endpoint of 𝑒 , and 0 otherwise.

without loss of generality that it receives 𝑝2. Given this, team 1 needs at least one of 𝑝3 and 𝑝4 in

order for EF1 to be fulfilled—assume without loss of generality that it receives 𝑝3. However, this

results in 𝑝2 having justified envy toward 𝑝3. □

In fact, the incompatibility in Proposition 5.1 persists even if EF1 is weakened to envy-freeness
up to 𝑘 participants (EF𝑘) for any fixed 𝑘 , where 𝑘 participants may be removed (rather than just

one participant) in order to eliminate the envy. To see this, consider a similar instance with 𝑛 = 2

and𝑚 = 4𝑘 such that

• 𝑣1 (𝑝 𝑗 ) = 3 and 𝑣2 (𝑝 𝑗 ) = 1 for 𝑗 ∈ [𝑘 + 1];
• 𝑣1 (𝑝 𝑗 ) = 2 and 𝑣2 (𝑝 𝑗 ) = 0 for 𝑗 ∈ {𝑘 + 2, . . . , 4𝑘};
• 1 ≻𝑝 𝑗

2 for 𝑗 ∈ [4𝑘].
Team 2 needs at least one of 𝑝1, . . . , 𝑝𝑘+1 for EF𝑘 to be satisfied. Given this, in order to avoid justified

envy, team 2 must receive all of 𝑝𝑘+2, . . . , 𝑝4𝑘 as well. However, this results in EF𝑘 from team 1

toward team 2 being violated.

Can we efficiently determine whether an EF1 and justified EF allocation exists in a given instance?

The following theorem gives a negative answer, provided that P ≠ NP.

Theorem 5.2. Even for nonnegative-value participants with strict preferences, deciding whether
there exists an EF1 and justified EF allocation is NP-complete.

Proof. The problem belongs to NP since it can be verified in polynomial time whether a given

allocation is EF1 and justified EF. We prove the NP-hardness by reducing from Independent Set,

the NP-complete problem of deciding whether a graph 𝐺 admits an independent set of size 𝑘 , i.e.,

a set of 𝑘 vertices no two of which are connected by an edge [Garey and Johnson, 1979, p. 194].

Consider an instance (𝐺,𝑘) of Independent Set, where 𝐺 = (𝑉 , 𝐸). Without loss of generality,
16

assume that 𝑘 ≥ 2 and |𝐸 | ≥ |𝑉 | ≥ 4. We construct an instance of our problem as follows.

We set 𝜏 B 2+|𝐸 |, whichwill be the number of teams in our instance, and𝜂 B |𝑉 |+(𝑘+1) (𝜏−1)+3,
which will be the number of participants in our instance. Clearly, 𝜂 > 𝜏 since (𝑘 + 1) (𝜏 − 1) > 𝜏 for

𝜏 ≥ 2. We set 𝜀 ∈ (0, 1) such that 𝜀 < min{1/(𝜂 − 2), 1 − 𝑘/(𝑘 + 1)}; hence, we have 1 > (𝜂 − 2)𝜀
and (𝑘 + 1) (1 − 𝜀) > 𝑘 .

Create one special team 𝑠 . For each edge 𝑒 ∈ 𝐸, create an edge team 𝑡𝑒 . For each vertex𝑤 ∈ 𝑉 ,
create a vertex participant 𝑝𝑤 . The special team 𝑠 assigns value 1 to each vertex participant 𝑝𝑤 for

𝑤 ∈ 𝑉 . Each edge team 𝑡𝑒 assigns value 1 to a vertex participant 𝑝𝑤 if𝑤 is an endpoint of edge 𝑒

and value 0 otherwise. Create an injective map 𝜙 : 𝑉 → 𝐸; this is possible since |𝑉 | ≤ |𝐸 |. Each
vertex participant 𝑝𝑤 prefers 𝑠 the most and 𝑡𝜙 (𝑤 ) the second most, and has an arbitrary preference

over the other teams (including ones that will be defined later).

16
If 𝑘 = 1 or |𝑉 | ≤ 3, the problem is trivial. If |𝑉 | > |𝐸 | , we repeatedly remove an isolated vertex and decrease 𝑘 by 1 each

time until |𝑉 | ≤ 2 |𝐸 | , then add an isolated clique of size |𝑉 | and increase 𝑘 by 1.
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For the special team 𝑠 , we create the following gadget 𝐼 that forces 𝑠 to get 𝑘 vertex participants

in our desired allocation. The gadget 𝐼 consists of two teams 𝑠 and 𝑑 , two participants 𝑎 and 𝑏,

and (𝑘 + 1) (𝜏 − 1) + 1 participants 𝑐 𝑗 for 𝑗 ∈ [(𝑘 + 1) (𝜏 − 1) + 1]. Let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐 (𝑘+1) (𝜏−1)+1}.
Participants 𝑎 and 𝑏 prefer 𝑠 the most and 𝑑 the second most, and have an arbitrary preference over

the other teams. Each 𝑐 𝑗 ∈ 𝐶 has an arbitrary (strict) preference over the teams. Teams 𝑠 and 𝑑 are

the only teams that have positive value for the participants in the gadget 𝐼 . Team 𝑠 assigns value 1

to each of 𝑎 and 𝑏 and value 1 − 𝜀 to each participant 𝑐 𝑗 ∈ 𝐶 . Team 𝑑 assigns value 1 to each of 𝑎

and 𝑏, and value 𝜀 to the remaining participants (including those outside the gadget). See Table 2

for a summary of the participants’ preferences and teams’ valuations in our constructed instance.

This completes the description of our construction, which clearly runs in polynomial time.

To finish the proof, we show that there exists an allocation 𝐴 satisfying EF1 and justified EF if

and only if there exists an independent set 𝑆 ⊆ 𝑉 of size 𝑘 in 𝐺 .

(⇒) First, we show that if there exists an allocation 𝐴 satisfying EF1 and justified EF, then there

exists an independent set 𝑆 ⊆ 𝑉 of size 𝑘 in 𝐺 . Suppose that there exists such an allocation 𝐴. We

first claim that in 𝐴, team 𝑠 must receive at least 𝑘 vertex participants. To see this, consider the

gadget 𝐼 . Observe that 𝑑 must be allocated at least one of the participants 𝑎 and 𝑏. Indeed, if 𝑑

receives no participant, then since 𝜂 > 𝜏 , there is a team that is allocated at least two participants

positively valued by 𝑑 , contradicting the EF1 property of 𝐴. Hence, 𝑑 is allocated at least one

participant. Moreover, if 𝑑 is allocated neither 𝑎 nor 𝑏, then these two participants must be allocated

to team 𝑠 , since otherwise either 𝑎 or 𝑏 would have justified envy toward a participant allocated to

team 𝑑 ; however, this would violate the EF1 condition from the viewpoint of 𝑑 since the maximum

value 𝑑 can achieve from participants other than 𝑎 and 𝑏 is (𝜂 − 2)𝜀, which is strictly less than 1.

Thus, at least one of 𝑎 and 𝑏 must be allocated to team 𝑑 ; without loss of generality, assume that 𝑏

is allocated to 𝑑 . This means that none of the participants 𝑐 𝑗 ∈ 𝐶 can be allocated to team 𝑠 , since

otherwise 𝑏 would have justified envy toward such a participant. Hence, at most 𝜏 − 1 teams receive

a participant from 𝐶; since |𝐶 | = (𝑘 + 1) (𝜏 − 1) + 1, at least one team 𝑡 ≠ 𝑠 gets at least 𝑘 + 2 such
participants. Thus, the value that team 𝑠 can obtain from the gadget 𝐼 is at most 1, and there is a

team 𝑡 that receives a subset of participants whose total value is at least (𝑘 + 2) (1 − 𝜀) from the

viewpoint of team 𝑠 . Since 𝐴 is EF1, team 𝑠 must receive value at least (𝑘 + 1) (1 − 𝜀) − 1, which is

strictly greater than 𝑘 − 1, from outside of the gadget 𝐼 . The only way this is possible is for team 𝑠

to receive at least 𝑘 vertex participants.

Now, let 𝑆 ′ denote the set of vertices in 𝑉 that correspond to the vertex participants allocated to

team 𝑠 . We have seen that 𝑆 ′ contains at least 𝑘 vertices. We claim that 𝑆 ′ forms an independent set

in𝐺 . To see this, suppose for contradiction that 𝑆 ′ contains a pair of vertices that form an edge 𝑒 in

𝐺 . Then, the edge team 𝑡𝑒 does not receive the participants positively valued by itself and therefore

envies team 𝑠 by more than one participant, a contradiction. Thus, 𝑆 ′ is an independent set of size

at least 𝑘 , and any subset 𝑆 ⊆ 𝑆 ′ of size 𝑘 forms an independent set as well.

(⇐) Conversely, suppose that there exists an independent set 𝑆 of size 𝑘 in 𝐺 . Take an edge

𝑒∗ such that 𝜙 (𝑤) = 𝑒∗ for some 𝑤 ∈ 𝑆 ; note that since 𝜙 is injective, we have 𝑒∗ ≠ 𝜙 (𝑤) for all
𝑤 ∈ 𝑉 \ 𝑆 . Consider the following allocation 𝐴. First, it allocates all the vertex participants 𝑝𝑤 with

𝑤 ∈ 𝑆 to 𝑠 and each of the remaining |𝑉 | − 𝑘 vertex participants 𝑝𝑤 to the edge team 𝑡𝜙 (𝑤 ) ; then, it
allocates participant 𝑎 to team 𝑠 and participant 𝑏 to team 𝑑 ; finally, it allocates the participants

𝑐 𝑗 ∈ 𝐶 to the teams other than 𝑠 in such a way that the edge team 𝑡𝑒∗ receives 𝑘 +2 such participants

and every other team receives 𝑘 + 1 such participants.

We first show that 𝐴 is EF1.
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• Consider team 𝑠 . Team 𝑠 gets value 𝑘 + 1. Team 𝑑 gets value 1 + (𝑘 + 1) (1 − 𝜀) from the

viewpoint of 𝑠 and the envy of 𝑠 would disappear by removing participant 𝑏. Every edge team

𝑡𝑒 with 𝜙 (𝑤) = 𝑒 for some𝑤 ∈ 𝑉 \ 𝑆 gets value at most 1 + (𝑘 + 1) (1 − 𝜀) from the viewpoint

of 𝑠 and the envy of 𝑠 would disappear upon removing the vertex participant 𝑝𝑤 allocated

to 𝑡𝑒 . The edge team 𝑡𝑒∗ gets value (𝑘 + 2) (1 − 𝜀) from the viewpoint of 𝑠 and the envy of 𝑠

would disappear upon removing one of the participants allocated to 𝑡𝑒∗ . Every other edge

team 𝑡𝑒 with 𝑒 ≠ 𝑒∗ and 𝑒 ≠ 𝜙 (𝑤) for all𝑤 ∈ 𝑉 \ 𝑆 obtains value at most (𝑘 + 1) (1 − 𝜀) from
the viewpoint of 𝑠 and therefore 𝑠 does not envy 𝑡𝑒 .

• Consider an arbitrary edge team 𝑡𝑒 . Team 𝑡𝑒 does not envy 𝑑 since 𝑑 does not receive a vertex

participant. Team 𝑡𝑒 does not envy 𝑠 by more than one participant since 𝑠 is allocated at most

one vertex participant 𝑝𝑤 corresponding to an endpoint of 𝑒 . Team 𝑡𝑒 does not envy edge

team 𝑡𝑒′ with 𝑒′ ≠ 𝜙 (𝑤) for all𝑤 ∈ 𝑉 \ 𝑆 since 𝑡𝑒 assigns value 0 to participants in 𝐶 . Team

𝑡𝑒 may envy edge team 𝑡𝑒′ with 𝑒
′ = 𝜙 (𝑤) for some𝑤 ∈ 𝑉 \ 𝑆 but the envy can be eliminated

by removing the vertex participant allocated to 𝑡𝑒′ .

• Consider team 𝑑 . Team 𝑑 does not envy the other teams by more than one participant, since 𝑑

receives value 1+ (𝑘 +1)𝜀 and every team other than 𝑑 gets value at most 1 from the viewpoint

of 𝑑 after removing some participant assigned to the team (recall that 1 > (𝜂 − 2)𝜀 ≥ (𝑘 + 2)𝜀).
Now, it remains to show that 𝐴 satisfies justified EF.

• Consider an arbitrary vertex participant 𝑝𝑤 . Each participant 𝑝𝑤 with 𝑤 ∈ 𝑆 does not

have justified envy toward the other participants since she is allocated to her first choice.

Each participant 𝑝𝑤 with 𝑤 ∉ 𝑆 is allocated to the edge team 𝑡𝜙 (𝑤 ) and she may envy the

participants allocated to 𝑠; however, these participants are valued at 1 = 𝑣𝑠 (𝑝𝑤) by 𝑠 , which
means the envy is not justified.

• Consider participant 𝑎. Participant 𝑎 does not envy the other participants since she is allocated

to her first choice.

• Consider participant 𝑏. Participant 𝑏 may envy the participants allocated to 𝑠 , but these

participants are valued at 1 = 𝑣𝑠 (𝑏) by 𝑠 , which means the envy is not justified.

• Consider participant 𝑐 𝑗 ∈ 𝐶 . Since every team values 𝑐 𝑗 no more than any other participant,

any envy that 𝑐 𝑗 has toward another participant is not justified.

This completes the proof. □

Despite Theorem 5.2, we show next that the problem becomes efficiently solvable if there are

two teams. Note that this special case covers the example in the proof of Proposition 5.1.

Theorem 5.3. For two teams and nonnegative-value participants with strict preferences, there is a
polynomial-time algorithm that decides whether an EF1 and justified EF allocation exists (and, if so,
computes such an allocation).

Proof. Let 𝑃1 be the set of participants who prefer team 1, and define 𝑃2 analogously. Given

an allocation, we let 𝑥1 be the maximum value for team 1 of a participant in 𝑃1 who is assigned

to team 2, and let 𝑛1 be the number of participants attaining this maximum value. If there is no

such participant, we let 𝑥1 = −∞ and 𝑛1 = 0. Define 𝑥2 and 𝑛2 analogously. The idea behind the

algorithm is that, once we fix 𝑥1, 𝑛1, 𝑥2, 𝑛2, we can efficiently check whether there is an EF1 and

justified EF allocation consistent with these values. This allows us to iterate over all possible values

of these parameters. The pseudocode of the algorithm is given as Algorithm 5.

To see that the algorithm is correct, consider an EF1 and justified EF allocation with the associated

values 𝑥1, 𝑛1, 𝑥2, 𝑛2. If a participant 𝑝 ∈ 𝑃 with 𝑣1 (𝑝) < 𝑥1 is assigned to team 1, then a participant

𝑝′ ∈ 𝑃1 with 𝑣1 (𝑝′) = 𝑥1 assigned to team 2 would have justified envy toward 𝑝 . Hence, any

participant 𝑝 ∈ 𝑃 with 𝑣1 (𝑝) < 𝑥1 must be assigned to team 2; this is also vacuously true if 𝑥1 = −∞.
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Algorithm 5: For deciding whether an EF1 and justified EF allocation exists under the

conditions of Theorem 5.3

1 Let 𝑃1 be the set of participants who prefer team 1, and 𝑃2 = 𝑃 \ 𝑃1; // Participants in 𝑃2
prefer team 2

2 Let 𝑉1 = {𝑣1 (𝑝) | 𝑝 ∈ 𝑃} and 𝑉2 = {𝑣2 (𝑝) | 𝑝 ∈ 𝑃};
3 Let𝑊1 = {(𝑥1, 𝑛1) | either 𝑥1 ∈ 𝑉1 and 𝑛1 ∈ [𝑚], or 𝑥1 = −∞ and 𝑛1 = 0}; // 𝑥1 represents

the maximum value for team 1 of a participant in 𝑃1 assigned to team 2, and 𝑛1 represents the
number of participants attaining this maximum value

4 Let𝑊2 = {(𝑥2, 𝑛2) | either 𝑥2 ∈ 𝑉2 and 𝑛2 ∈ [𝑚], or 𝑥2 = −∞ and 𝑛2 = 0}; // 𝑥2 represents
the maximum value for team 2 of a participant in 𝑃2 assigned to team 1, and 𝑛2 represents the
number of participants attaining this maximum value

5 for (𝑥1, 𝑛1) ∈𝑊1 and (𝑥2, 𝑛2) ∈𝑊2 do
6 Assign all participants 𝑝 ∈ 𝑃 such that 𝑣1 (𝑝) < 𝑥1 to team 2, and all participants 𝑝 ∈ 𝑃

such that 𝑣2 (𝑝) < 𝑥2 to team 1;

7 Assign all participants 𝑝 ∈ 𝑃1 such that 𝑣1 (𝑝) > 𝑥1 to team 1, and all participants 𝑝 ∈ 𝑃2
such that 𝑣2 (𝑝) > 𝑥2 to team 2;

8 if there is a conflict in the preceding assignments (i.e., some participant has been assigned
to both teams) then continue;

9 Let 𝑄1 be the participants from 𝑃1 who are still unassigned; // 𝑣1 (𝑝) = 𝑥1 for every
𝑝 ∈ 𝑄1

10 Let 𝑄2 be the participants from 𝑃2 who are still unassigned; // 𝑣2 (𝑝) = 𝑥2 for every
𝑝 ∈ 𝑄2

11 Among the participants in 𝑄1, assign to team 2 the ones with the highest value for

team 2 (breaking ties arbitrarily) so that there are a total of 𝑛1 participants 𝑝 ∈ 𝑃1 with
𝑣1 (𝑝) = 𝑥1 assigned to team 2;

12 if the preceding assignment is not possible then continue;
13 Assign all remaining participants in 𝑄1 to team 1;

14 Among the participants in 𝑄2, assign to team 1 the ones with the highest value for

team 1 (breaking ties arbitrarily) so that there are a total of 𝑛2 participants 𝑝 ∈ 𝑃2 with
𝑣2 (𝑝) = 𝑥2 assigned to team 1;

15 if the preceding assignment is not possible then continue;
16 Assign all remaining participants in 𝑄2 to team 2;

17 if the resulting allocation is EF1 then return this allocation;

18 return None;

Moreover, by definition of 𝑥1, any participant 𝑝 ∈ 𝑃1 with 𝑣1 (𝑝) > 𝑥1 must be assigned to team 1.

Analogous arguments apply to 𝑣2. It follows that the relevant participants must be assigned as in

Lines 6 and 7 of Algorithm 5. Moreover, once these assignments are made, justified EF is guaranteed.

At this point, the participants who may still be unassigned are participants 𝑝 ∈ 𝑃1 with 𝑣1 (𝑝) = 𝑥1
and participants 𝑝 ∈ 𝑃2 with 𝑣2 (𝑝) = 𝑥2. Let 𝑄1 be the set of participants 𝑝 ∈ 𝑃1 with 𝑣1 (𝑝) = 𝑥1
who are still unassigned, and define𝑄2 analogously. Since team 1 is indifferent between participants

in 𝑄1, in order to check whether EF1 can be satisfied, it suffices to assign to team 2 a subset of

these participants with the highest value for team 2, with the size of the subset chosen so that the

definition of 𝑛1 is fulfilled. A similar statement holds for 𝑄2. The correctness of the algorithm then

follows from the fact that it checks all possible values of 𝑥1, 𝑛1, 𝑥2, 𝑛2.



Ayumi Igarashi, Yasushi Kawase, Warut Suksompong, and Hanna Sumita 22

The number of possible values of (𝑥1, 𝑛1, 𝑥2, 𝑛2) is𝑂 (𝑚4), and for each (𝑥1, 𝑛1, 𝑥2, 𝑛2) the algorithm
takes time 𝑂 (𝑚). Hence, Algorithm 5 runs in time 𝑂 (𝑚5). □

Finally, we prove that if the two teams have identical valuations, then an EF1 and justified EF

allocation always exists.

Theorem 5.4. For two teams with identical valuations and nonnegative-value participants, there
exists an EF1 and justified EF allocation, and such an allocation can be computed in polynomial time.

Proof. To show the theorem, we will align the participants on a path so that the values form

a “valley”, and apply a discrete “cut-and-choose” algorithm to construct an EF1 and justified EF

allocation.

Formally, given a valuation function 𝑣 and a path P = (𝑝1, 𝑝2, . . . , 𝑝𝑡 ) of participants, 𝑝 𝑗 is called

a lumpy tie if

𝑣 ({𝑝1, . . . , 𝑝 𝑗 }) ≥ 𝑣 ({𝑝 𝑗+1, . . . , 𝑝𝑡 })

and

𝑣 ({𝑝1, . . . , 𝑝 𝑗−1}) ≤ 𝑣 ({𝑝 𝑗 , . . . , 𝑝𝑡 }) .

Such a participant exists, e.g., by taking a participant 𝑝 𝑗 with the smallest index 𝑗 such that

𝑣 ({𝑝1, . . . , 𝑝 𝑗 }) ≥ 𝑣 ({𝑝 𝑗+1, . . . , 𝑝𝑡 }). Using the notion of a lumpy tie, Bilò et al. [2022, Def. 3.1]

developed the following cut-and-choose algorithm over a path that computes an EF1 allocation for

two teams with identical valuations in polynomial time.

Algorithm 6: Discrete cut-and-choose over a path
1 Input P = (𝑝1, 𝑝2, . . . , 𝑝𝑡 ) and valuation function 𝑣 ;

2 Let 𝑝 𝑗 denote the leftmost lumpy tie of the path 𝑃 ;

3 Let 𝐿 = {𝑝1, . . . , 𝑝 𝑗−1} and 𝑅 = {𝑝 𝑗+1, . . . , 𝑝𝑡 };
4 if 𝑣 (𝐿) ≥ 𝑣 (𝑅) then
5 return 𝐴 = (𝐿, 𝑅 ∪ {𝑝 𝑗 });
6 else
7 return 𝐴 = (𝐿 ∪ {𝑝 𝑗 }, 𝑅);

Now, consider an instance consisting of two teams with the same nonnegative valuation 𝑣 . For

𝑖 ∈ [2], denote by 𝑆𝑖 the set of participants who prefer team 𝑖 over the other team (ties broken

arbitrarily). Relabel the participants in 𝑆1 = {𝑦1, 𝑦2, . . . , 𝑦ℓ } so that 𝑣 (𝑦1) ≤ 𝑣 (𝑦2) ≤ · · · ≤ 𝑣 (𝑦ℓ ), and
relabel the participants in 𝑆2 = {𝑧1, 𝑧2, . . . , 𝑧ℎ} so that 𝑣 (𝑧1) ≤ 𝑣 (𝑧2) ≤ · · · ≤ 𝑣 (𝑧ℎ). Consider the
path P∗ B (𝑦ℓ , . . . , 𝑦1, 𝑧1, . . . , 𝑧ℎ).
Apply Algorithm 6 to P∗ and 𝑣 . Let 𝐴 denote the resulting allocation. The allocation 𝐴 is EF1

[Bilò et al., 2022, Prop. 3.2]. To show that 𝐴 is justified EF, assume first that the leftmost lumpy

tie over P∗ is a participant 𝑦𝑖 for some 𝑖 ∈ [ℓ]. Every participant 𝑧𝑘 for 𝑘 ∈ [ℎ], as well as every
participant 𝑦 𝑗 with 𝑗 > 𝑖 , is already allocated to her favorite team. Consider a participant 𝑦 𝑗 with

𝑗 ≤ 𝑖 who is allocated to team 2. The participant 𝑦 𝑗 may envy a participant 𝑦 𝑗 ′ with 𝑗 ′ ≥ 𝑖 who is

allocated to team 1; however, since 𝑣 (𝑦 𝑗 ′ ) ≥ 𝑣 (𝑦 𝑗 ), this envy is not justified. The proof proceeds

similarly if the leftmost lumpy tie over P∗ is a participant 𝑧𝑖 for some 𝑖 ∈ [ℎ]. □
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6 CONCLUSION
In this work, we have investigated the setting of fair division with two-sided preferences, which

serves to model the allocation of participating players to sports teams, employees to branches of a

restaurant chain, or volunteers to community service clubs. Our focus is on fairness among the

teams together with stability for both sides. We showed that EF1, swap stability, and individual

stability are compatible in this setting, and an allocation satisfying these properties can be computed

in polynomial time even when the teams may have positive or negative values for the participants.

If all participants yield nonnegative value to the teams, an EF1 and PO allocation always exists,

and such an allocation can be found efficiently provided that the values are binary. Furthermore,

we demonstrated that an EF1 and justified EF allocation does not always exist and determining

whether such an allocation exists is NP-complete.

For future work, it would be worth examining the interplay between other common (one-sided)

fairness notions and two-sided stability conditions such as swap stability and justified EF. For

instance, while we have concentrated on the important fairness notion of EF1, one might try to

achieve an approximation of maximin share fairness (MMS) [Budish, 2011, Kurokawa et al., 2018],
either in place of or in conjunction with EF1. Note that EF1 implies a 1/𝑛-approximation of MMS for

nonnegative-value participants [Amanatidis et al., 2018], so our relevant results also hold for this

approximation. It could also be interesting to extend our results to accommodate teams with varying

entitlements [Babaioff et al., 2021a,b, Chakraborty et al., 2021a, Farhadi et al., 2019]; this would

allow us to capture restaurant branches or community service clubs of different sizes.
17
Finally, one

could attempt to bring other concepts from the rich matching literature into consideration as well.
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A QUOTA CONSTRAINTS
In some applications of fair division, not all allocations are feasible, that is, there may be constraints

on the feasible allocations [Suksompong, 2021]. For example, as discussed in Section 1, the balanced-

ness constraint is often desirable when allocating participating players to sports teams, as the rule of

the sport may require every team to have a certain number of players. In this appendix, we consider

a broader class of cardinality constraints in which each team 𝑖 has an upper quota 𝑧𝑖 , meaning that

the team cannot receive more than 𝑧𝑖 participants. The quota can represent the capacity of the

team, for instance, the number of volunteers that the community service club could take or the

amount of tasks that the team can possibly perform. We assume without loss of generality that 𝑧𝑖 is

an integer in {0, 1, . . . ,𝑚}; the unconstrained setting studied in the rest of this paper corresponds

to taking 𝑧𝑖 =𝑚 for all 𝑖 ∈ 𝑇 . To ensure that there is at least one feasible allocation, we also assume

that

∑
𝑖∈𝑇 𝑧𝑖 ≥ 𝑚. Note that if

∑
𝑖∈𝑇 𝑧𝑖 =𝑚, then each team 𝑖 must receive exactly 𝑧𝑖 participants.

With quota constraints that may vary from one team to another, envy in the usual sense is

sometimes unavoidable—if there are two teams with 𝑧1 = 2 and 𝑧2 = 8, and 10 participants of

identical positive value are to be allocated, then team 1 inevitably has huge envy toward team 2. To

handle such heterogeneous constraints, prior work has proposed the notion of feasible envy [Dror

et al., 2023, Wu et al., 2021].
18
In our terminology, with nonnegative-value participants, a team 𝑖

does not feasible-envy another team 𝑗 if for every subset of 𝑗 ’s participants that fits within 𝑖’s

quota, 𝑖’s value for that subset does not exceed her value for her own set of participants. Dror et al.

[2023, Thm. 2] showed that under one-sided preferences, if all participants yield nonnegative value,

the capped round-robin algorithm produces a “feasible EF1” allocation. The capped round-robin

18
Feasible envy has been applied to more general constraints, including budget constraints [Wu et al., 2021] and matroid

constraints [Dror et al., 2023].
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algorithm is a simple modification of the vanilla round-robin algorithm where a team does not

receive any more pick upon reaching its quota.

As it is, the notion of feasible envy does not workwell with nonpositive-value participants. Indeed,

if there are two teams with quotas 𝑧1 = 2 and 𝑧2 = 8, and 10 participants of identical negative value
are to be allocated, then team 2 inevitably has huge “feasible envy” toward team 1. We propose

the following definition, which accommodates both nonnegative-value and nonpositive-value

participants simultaneously.

Definition A.1. In the setting with quotas, an allocation 𝐴 is said to satisfy

• quota-EF if for all distinct 𝑖, 𝑗 ∈ 𝑇 , there exists a subset 𝐵𝑖 ⊆ 𝐴𝑖 of sizemin{|𝐴𝑖 |, 𝑧 𝑗 } such that

for every subset 𝐵 𝑗 ⊆ 𝐴 𝑗 of size min{|𝐴 𝑗 |, 𝑧𝑖 }, it holds that 𝑣𝑖 (𝐵𝑖 ) ≥ 𝑣𝑖 (𝐵 𝑗 );
• quota-EF1 if for all distinct 𝑖, 𝑗 ∈ 𝑇 , there exists a subset 𝐵𝑖 ⊆ 𝐴𝑖 of size min{|𝐴𝑖 |, 𝑧 𝑗 } such
that for every subset 𝐵 𝑗 ⊆ 𝐴 𝑗 of size min{|𝐴 𝑗 |, 𝑧𝑖 }, it holds that 𝑣𝑖 (𝐵𝑖 \ 𝑋 ) ≥ 𝑣𝑖 (𝐵 𝑗 \ 𝑌 ) for
some 𝑋 ⊆ 𝐵𝑖 and 𝑌 ⊆ 𝐵 𝑗 with |𝑋 ∪ 𝑌 | ≤ 1;

• quota-EF[1,1] if the same condition holds as for quota-EF1, except that |𝑋 ∪𝑌 | ≤ 1 is replaced

by |𝑋 |, |𝑌 | ≤ 1.

Several remarks on Definition A.1 are in order.

First, observe that if 𝑧𝑖 ≤ 𝑧 𝑗 , then |𝐴𝑖 | ≤ 𝑧𝑖 ≤ 𝑧 𝑗 and thus min{|𝐴𝑖 |, 𝑧 𝑗 } = |𝐴𝑖 |. Analogously, if
𝑧𝑖 ≥ 𝑧 𝑗 , then |𝐴 𝑗 | ≤ 𝑧 𝑗 ≤ 𝑧𝑖 and thus min{|𝐴 𝑗 |, 𝑧𝑖 } = |𝐴 𝑗 |.

Second, since the unconstrained setting corresponds to taking 𝑧𝑖 = 𝑚 for all 𝑖 ∈ 𝑇 , we have
min{|𝐴𝑖 |, 𝑧 𝑗 } = |𝐴𝑖 | and min{|𝐴 𝑗 |, 𝑧𝑖 } = |𝐴 𝑗 | for all 𝑖, 𝑗 , which means that the only choices of 𝐵𝑖
and 𝐵 𝑗 in Definition A.1 are𝐴𝑖 and𝐴 𝑗 , respectively. Hence, quota-EF1 (resp., quota-EF[1,1]) reduces

to EF1 (resp., EF[1,1]) in that setting. By the remarks after Definition 2.1, in the unconstrained

setting, both quota-EF1 and quota-EF[1,1] coincide with EF1 for nonnegative-value participants as

well as for nonpositive-value participants.

Third, suppose that all participants yield nonnegative value to every team. If 𝑧𝑖 ≤ 𝑧 𝑗 , we require

comparing 𝐴𝑖 with every subset 𝐵 𝑗 ⊆ 𝐴 𝑗 of size min{|𝐴 𝑗 |, 𝑧𝑖 }, whereas if 𝑧𝑖 ≥ 𝑧 𝑗 , we require

comparing some subset 𝐵𝑖 ⊆ 𝐴𝑖 of size min{|𝐴𝑖 |, 𝑧 𝑗 } with 𝐴 𝑗 . Our definition is thus stronger than

the EF1 notion of Wu et al. [2021], which—in the case 𝑧𝑖 ≥ 𝑧 𝑗—only requires comparing the set 𝐴𝑖

itself with 𝐴 𝑗 .
19

Fourth, one could ask whether the condition “there exists a subset 𝐵𝑖 ⊆ 𝐴𝑖” can be replaced

by “for every subset 𝐵𝑖 ⊆ 𝐴𝑖”. As the following example shows, the notion resulting from this

modification may not be satisfiable, even with nonnegative-value participants only (or nonpositive-

value participants only).

Example A.2. Consider an instance consisting of 𝑛 = 2 teams with quotas 𝑧1 = 5 and 𝑧2 = 3, and

𝑚 = 8 participants. Both teams have identical valuations over the participants—they have value 0

for four of the participants and 1 for each of the remaining four participants.

Since all participants yield nonnegative value, quota-EF1 and quota-EF[1,1] coincide. We show

next that if the condition “there exists a subset 𝐵𝑖 ⊆ 𝐴𝑖” in Definition A.1 is replaced by “for every

subset 𝐵𝑖 ⊆ 𝐴𝑖”, then quota-EF1 cannot be satisfied in this instance. Call a participant yielding

value 1 a “heavy participant” and one yielding value 0 a “light participant”. Let us consider the four

possibilities.

• Suppose that team 2 receives three light participants, so team 1 receives four heavy par-

ticipants and one light participant. If team 2 considers the set 𝐴2 consisting of three light

participants against the set 𝐵1 ⊆ 𝐴1 consisting of three heavy participants, then team 2 envies

team 1 by more than one participant.

19
Dror et al. [2023] defined their feasible-EF1 notion slightly differently.
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• Suppose that team 2 receives one heavy participant and two light participants, so team 1

receives three heavy participants and two light participants. If team 2 considers the set

𝐴2 consisting of one heavy participant and two light participants against the set 𝐵1 ⊆ 𝐴1

consisting of three heavy participants, then team 2 envies team 1 bymore than one participant.

• Suppose that team 2 receives two heavy participants and one light participant, so team 1

receives two heavy participants and three light participants. If team 1 considers the set

𝐵1 ⊆ 𝐴1 consisting of three light participants against the set 𝐴2 consisting of two heavy

participants and one light participant, then team 1 envies team 2 by more than one participant.

• Suppose that team 2 receives three heavy participants, so team 1 receives one heavy partici-

pant and four light participants. If team 1 considers the set 𝐵1 ⊆ 𝐴1 consisting of three light

participants against the set 𝐴2 consisting of three heavy participants, then team 1 envies

team 2 by more than one participant.

Hence, the stronger version of quota-EF1 cannot be satisfied in this instance.

Observe that if we change the value of the last four participants from 1 to −1 (so the instance
consists only of nonpositive-value participants), a similar argument still shows that the stronger

version of quota-EF1 cannot be satisfied.

Next, we introduce a version of balancedness with respect to quotas.

Definition A.3. In the setting with quotas, an allocation 𝐴 is said to be quota-balanced provided

that the following holds: for 𝑖, 𝑗 ∈ 𝑇 , if |𝐴𝑖 | ≤ |𝐴 𝑗 | − 2, then |𝐴𝑖 | = 𝑧𝑖 .

Quota-balancedness ensures that if a team receives at least two participants fewer than another

team, this is because the former team has already reached its quota. Note that without quotas,

quota-balancedness reduces to the balancedness notion studied in the rest of this paper.

We can now state a generalization of Theorem 3.2 in the presence of quota constraints.

Theorem A.4. In the setting with quotas, for any instance, a quota-balanced allocation that satisfies
quota-EF[1,1] and swap stability exists and can be computed in polynomial time.

Since quota-EF[1,1] reduces to quota-EF1 for nonnegative-value participants as well as for

nonpositive-value participants—for similar reasons as the unconstrained analogs EF[1,1] and EF1—

we obtain the following corollary, which generalizes Corollary 3.3.

Corollary A.5. In the setting with quotas, for any nonnegative-value participant instance, a
quota-balanced allocation that satisfies quota-EF1 and swap stability exists and can be computed in
polynomial time. The same holds for any nonpositive-value participant instance.

To establish Theorem A.4, we combine our algorithm from Theorem 3.2 with the capped round-

robin algorithm of Dror et al. [2023]. Define a function 𝑓 : [𝑚] → [𝑛] by following the round-robin

sequence 1, 2, . . . , 𝑛, 1, 2, . . . , with the exception that if a number 𝑖 has already appeared 𝑧𝑖 times,

then we skip over it in the rest of the sequence. Since we assume that

∑
𝑖∈𝑇 𝑧𝑖 ≥ 𝑚, this sequence is

well-defined. Our algorithm is the same as Algorithm 1 except that we apply this new function 𝑓 ;

let us refer to it as the “modified Algorithm 1”.

Observe that in the output allocation𝐴 of the modified Algorithm 1, the inequality |𝐴𝑖 | ≤ |𝐴 𝑗 | −2
can occur only if team 𝑖 has reached its quota, so 𝐴 is quota-balanced. Moreover, swap stability and

polynomial running time can be shown as in the unconstrained setting (Lemmas 3.5 and 3.6). It

therefore remains to prove that 𝐴 satisfies quota-EF[1,1].

Lemma A.6. In the setting with quotas, the output allocation 𝐴 of the modified Algorithm 1 is
quota-EF[1,1].
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Proof. Fix arbitrary distinct 𝑖, 𝑗 ∈ 𝑇 . We consider three cases.

Case 1: |𝐴𝑖 | = |𝐴 𝑗 |. Since |𝐴𝑖 | ≤ 𝑧𝑖 and |𝐴 𝑗 | ≤ 𝑧 𝑗 , we havemin{|𝐴𝑖 |, 𝑧 𝑗 } = |𝐴𝑖 | andmin{|𝐴 𝑗 |, 𝑧𝑖 } =
|𝐴 𝑗 |. This means that the only choices of 𝐵𝑖 and 𝐵 𝑗 in Definition A.1 are 𝐴𝑖 and 𝐴 𝑗 , respectively.

Then, the argument given in Lemma 3.4 for the case |𝐴𝑖 | = |𝐴 𝑗 | holds as is. (If |𝐴𝑖 | = |𝐴 𝑗 | = 0,

EF[1,1] from 𝑖 to 𝑗 holds trivially.)

Case 2: |𝐴𝑖 | > |𝐴 𝑗 |. Since |𝐴𝑖 | ≤ 𝑧𝑖 , we havemin{|𝐴 𝑗 |, 𝑧𝑖 } = |𝐴 𝑗 |. This means that the only choice

of 𝐵 𝑗 in Definition A.1 is 𝐴 𝑗 . We consider two subcases.

• Case 2.1: |𝐴𝑖 | ≥ |𝐴 𝑗 |+2. Since𝐴 is quota-balanced, it must be that 𝑧 𝑗 = |𝐴 𝑗 |, somin{|𝐴𝑖 |, 𝑧 𝑗 } =
|𝐴 𝑗 |. Let 𝐵𝑖 be the subset of 𝐴𝑖 consisting of the |𝐴 𝑗 | participants matched to the vertices

with the lowest indices in 𝑄 .20 The same argument as in the case |𝐴𝑖 | = |𝐴 𝑗 | holds, with 𝐵𝑖
taking the role of 𝐴𝑖 .

• Case 2.2: |𝐴𝑖 | = |𝐴 𝑗 | + 1. Since 𝑧 𝑗 ≥ |𝐴 𝑗 |, we have min{|𝐴𝑖 |, 𝑧 𝑗 } = min{|𝐴 𝑗 | + 1, 𝑧 𝑗 } ∈
{|𝐴 𝑗 |, |𝐴 𝑗 |+1}. Ifmin{|𝐴𝑖 |, 𝑧 𝑗 } = |𝐴 𝑗 |, the same argument as in Case 2.1 holds. Else,min{|𝐴𝑖 |, 𝑧 𝑗 } =
|𝐴 𝑗 | + 1, which means that 𝑧 𝑗 ≥ |𝐴 𝑗 | + 1 and thus 𝑖 < 𝑗 . Since |𝐴𝑖 | = |𝐴 𝑗 | + 1, the only set

𝐵𝑖 ⊆ 𝐴𝑖 of size min{|𝐴𝑖 |, 𝑧 𝑗 } = |𝐴 𝑗 | + 1 is 𝐴𝑖 itself. We may now apply the argument given in

Lemma 3.4 for the case |𝐴𝑖 | > |𝐴 𝑗 |.
Case 3: |𝐴𝑖 | < |𝐴 𝑗 |. Since |𝐴 𝑗 | ≤ 𝑧 𝑗 , we have min{|𝐴𝑖 |, 𝑧 𝑗 } = |𝐴𝑖 |. This means that the only

choice of 𝐵𝑖 in Definition A.1 is 𝐴𝑖 . We consider two subcases.

• Case 3.1: |𝐴𝑖 | ≤ |𝐴 𝑗 |−2. Since𝐴 is quota-balanced, it must be that 𝑧𝑖 = |𝐴𝑖 |, somin{|𝐴 𝑗 |, 𝑧𝑖 } =
|𝐴𝑖 |. Let 𝑘 = |𝐴𝑖 |, and consider any subset 𝐵 𝑗 ⊆ 𝐴 𝑗 of size 𝑘 . Observe that for each ℓ ∈
{2, 3, . . . , 𝑘}, the ℓth lowest index of a vertex in 𝑄 matched to a participant in 𝐵 𝑗 is higher

than the (ℓ − 1)th lowest index of a vertex in𝑄 matched to a participant in𝐴𝑖 . Then, a similar

argument as in the case |𝐴𝑖 | = |𝐴 𝑗 | holds, with 𝐵 𝑗 taking the role of 𝐴 𝑗 .

• Case 3.2: |𝐴𝑖 | = |𝐴 𝑗 |−1. Since 𝑧𝑖 ≥ |𝐴𝑖 |, we havemin{|𝐴 𝑗 |, 𝑧𝑖 } = min{|𝐴𝑖 |+1, 𝑧𝑖 } ∈ {|𝐴𝑖 |, |𝐴𝑖 |+
1}. Ifmin{|𝐴 𝑗 |, 𝑧𝑖 } = |𝐴𝑖 |, the same argument as in Case 3.1 holds. Else,min{|𝐴 𝑗 |, 𝑧𝑖 } = |𝐴𝑖 |+1.
Let 𝑘 = |𝐴𝑖 | + 1. Again, observe that for each ℓ ∈ {2, 3, . . . , 𝑘}, the ℓth lowest index of a vertex

in 𝑄 matched to a participant in 𝐴 𝑗 is higher than the (ℓ − 1)th lowest index of a vertex in 𝑄

matched to a participant in 𝐴𝑖 . Moreover, since |𝐴𝑖 | = |𝐴 𝑗 | − 1, the only set 𝐵 𝑗 ⊆ 𝐴 𝑗 of size

min{|𝐴 𝑗 |, 𝑧𝑖 } = |𝐴𝑖 | + 1 is 𝐴 𝑗 itself. Then, a similar argument as in Lemma 3.4 for the case

|𝐴𝑖 | < |𝐴 𝑗 | holds.
Hence, in all three cases, the allocation 𝐴 is quota-EF[1,1]. □

20
The set𝑄 is defined as in Algorithm 1.
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