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Abstract

Metric distortion in social choice provides a framework for assessing how well
voting rules minimize social cost in scenarios where voters and candidates exist
in a shared metric space, with voters submitting rankings and the rule outputting
a single winner. We expand this framework to include probabilistic voting. Our
extension encompasses a broad range of probability functions, including widely
studied models like Plackett-Luce (PL) and Bradley-Terry, and a novel "pairwise
quantal voting" model inspired by quantal response theory. We demonstrate that
distortion results under probabilistic voting better correspond with conventional
intuitions regarding popular voting rules such as Plurality, Copeland, and Random
Dictator (RD) than those under deterministic voting. For example, in the PL model
with candidate strength inversely proportional to the square of their metric distance,
we show that Copeland’s distortion is at most 2, whereas that of RD is Ω(

√
m) in

large elections, where m is the number of candidates. This contrasts sharply with
the classical model, where RD beats Copeland with a distortion of 3 versus 5 [1].

1 Introduction

Societies must make decisions collectively; different agents often have conflicting interests, and the
choice of the mechanism used for combining everyone’s opinions often makes a big difference to the
outcome. The machine learning community has applied social choice principles for AI alignment
[2, 3], algorithmic fairness [4, 5], and preference modelling [6, 7]. Over the last century, there has
been increasing interest in using computational tools to analyse and design voting rules [8–11]. One
prominent framework for evaluating voting rules is that of distortion [12], where the voting rule has
access to only the ordinal preferences of the voters. However, the figure of merit is the sum of all
voters’ cardinal utilities (or costs). The distortion of a voting rule is the worst-case ratio of the cost of
the alternative it selects and the cost of the truly optimal alternative.

An additional assumption is imposed in metric distortion [1] – that the voters and candidates all lie in
a shared (unknown) metric space, and costs are given by distances (thus satisfying non-negativity
and triangular inequality). This model is a generalization of a commonly studied spatial model of
voting in the Economics literature [13, 14], and has a natural interpretation of voters liking candidates
with a similar ideological position across many dimensions. While metric distortion is a powerful
framework and has led to the discovery and re-discovery of interesting voting rules (e.g. Plurality
Veto [15] and the study of Maximal Lotteries [16] for metric distortion by Charikar et al. [17]), its
outcomes sometimes do not correspond with traditional wisdom around popular voting rules. For
example, the overly simple Random Dictator (RD) rule (where the winner is the top choice of a
uniform randomly selected voter) beats the Copeland rule (which satisfies the Condorcet Criterion
[10] and other desirable properties) with a metric distortion of 3 versus 5 [1].

While not yet adopted in the metric distortion framework, there is a mature line of work on
Probabilistic voting (PV) [18–20]. Here, the focus is on the behavioural modelling of voters and
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accounting for the randomness of their votes. Two sources of this randomness often cited in the
literature are the boundedness of the voters’ rationality and the noise in their estimates of candidates’
positions. A popular model for this behaviour is based on the Quantal Response Theory [20]. Another
closely related line of work is on Random Utility Models (RUMs) [21–23] in social choice where
the hypothesis is that the candidates have ground-truth strengths. Voters make noisy observations of
these strengths and vote accordingly. We adopt these models of voting behaviour and study it within
the metric distortion framework. The questions we ask are:

Given a model of probabilistic voting, what is the metric distortion of popular voting rules?
How does this differ (qualitatively and quantitatively) from the deterministic model?

1.1 Preliminaries and Notation

Let N be a set of n voters and A be the set of m candidates. Let S be the set of total orders on A.
Each voter i ∈ N has a preference ranking σi ∈ S. A vote profile is a set of preference rankings
σN = (σ1, ..., σn) ∈ Sn for all voters. The tuple (N ,A, σN ) defines an instance of an election. Let
∆(A) denote the set of all probability distributions over the set of candidates.

Definition 1 (Voting Rule). A voting rule f : Sn → ∆(A) takes a vote profile σN and outputs a
probability distribution p over the alternatives.

For deterministic voting rules, we overload notation by saying that the rule’s output is a candidate
and not a distribution. We now define some voting rules [10]. Let I denote the indicator function.

Random Dictator Rule: Select a voter uniformly at random and output their top choice, i.e.,
RD(σN ) = p such that pj = 1

n

∑
i∈N I(σi,1 = j).

Plurality Rule: Choose the candidate who is the top choice of the most voters, i.e., PLU(σN ) =
argmaxj∈A

∑
i∈N I(σi,1 = j). Ties are broken arbitrarily.

Copeland Rule: Choose the candidate who wins the most pairwise comparisons, i.e., COP(σN ) =
argmaxj∈A

∑
j′∈A\{j} I

(∑
i∈N I(j ≻σi

j′) > n
2

)
. Ties are broken arbitrarily.

Distance function d : (N ∪A)2 → R≥0 satisfies triangular inequality (d(x, y) ≤ d(x, z) + d(z, y))
and symmetry (d(x, y) = d(y, x)). The distance between voter i ∈ N and candidate j ∈ A is also
referred to as the cost of j for i. We consider the most commonly studied social cost function, which
is the sum of the costs of all voters. SC(j, d) :=

∑
i∈N d(i, j).

In deterministic voting, the preference ranking σi of voter i is consistent with the distances. That is,
d(i, j) > d(i, j′) =⇒ j′ ≻σi j for all voters i ∈ N and candidates j, j′ ∈ A. Let ρ(σN ) be the set
of distance functions d consistent with vote profile σN . The metric distortion of a voting rule is:

Definition 2 (Metric Distortion). DIST(f) = sup
N ,A,σN

sup
d∈ρ(σN )

E[SC(f(σN ),d)]
min
j∈A

SC(j,d) .

1.2 Our Contributions

We extend the study of metric distortion to probabilistic voting (Definition 4). This extension is useful
since voters, in practice, have been shown to vote randomly [20]. We define axiomatic properties
of models of probabilistic voting which are suitable for studying metric distortion. These are scale-
freeness with distances (Axiom 1), pairwise order probabilities being independent of other candidates
(Axiom 2), and strict monotonicity of pairwise order probabilities in distances (Axiom 3).

All our results apply to a broad class of models of probabilistic models, as explained in § 2. We
provide distortion bounds for all n ≥ 3 and m ≥ 2, which are most salient in the limit n → ∞. For
large elections (m fixed, n → ∞), we provide matching upper and lower bounds on the distortion of
Plurality, an upper bound for Copeland, and a lower bound for RD. The distortion of plurality grows
linearly in m. The distortion upper bound of Copeland is constant. The distortion lower bound for
RD increases sublinearly in m where this rate depends on the probabilistic model. Crucially, our
results match those in deterministic voting in the limit where the randomness goes to zero.

The technique is as follows. For the problem of maximizing the distortion, we establish a critical
threshold of the expected fraction of votes on pairwise comparisons on all edges on a directed path
from a winner to the “true optimal" candidate for Copeland and Plurality. This path is one or two hops
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for Copeland and one for Plurality. We then formulate a linear-fractional program which incorporates
this critical threshold. We linearize this program via the sub-level sets technique [24], and find a
feasible solution of the dual problem. Concentration inequalities on this solution provide an upper
bound on the distortion. We find a matching lower bound for Plurality by construction.

1.3 Related Work

Metric distortion Anshelevich et al. [1] initiated the study of metric distortion and showed that
any deterministic voting rule has a distortion of at least 3 and that Copeland has a distortion of 5.
The Plurality Veto Rule attains the optimal distortion of 3 [15]. Charikar and Ramakrishnan [25]
showed that any randomized voting rule has a distortion of at least 2.112. Charikar et al. [17] gave
a randomized voting rule with a distortion of at most 2.753. Anshelevich et al. [26] gave a useful
survey on distortion in social choice.

Distortion with Additional Information Abramowitz et al. [27] showed that deterministic voting
rules achieve a distortion of 2 when voters provide preference strengths as ratios of distances.
Amanatidis et al. [28] demonstrated that even a few queries from each voter can significantly improve
distortion in non-metric settings. Anshelevich et al. [29] examined threshold approval voting, where
voters approve candidates with utilities above a threshold. Our work relates to these studies since in
probabilistic voting, the likelihood of a voter switching the order of two candidates depends on the
relative strength of their preference, often resulting in lower distortion than in deterministic voting.

Probabilistic voting and random utility models (RUMs) Hinich [30] showed that the celebrated
Median Voter Theorem of [31] does not hold under probabilistic voting. Classical work has focused
on studying the equilibrium positions of voters and/or candidates in game-theoretic models of
probabilistic voting [20, 32–35]. McKelvey and Patty [20] adopt the quantal response model, a
popular way to model agents’ bounded rationality.

RUMs have mostly been studied in social choice [21, 23, 36] with the hypothesis that candidates have
universal ground-truth strengths, which voters make noisy observations of. Our model is the same as
RUM regarding the voters’ behaviour; however, voters have independent costs from candidates. The
Plackett-Luce (PL) model [37, 38] has been widely studied in social choice [39–41]. For probabilities
on pairwise orders, PL reduces to the Bradley-Terry (BT) model [42]. These probabilities are
proportional to candidates’ strengths (which we define as the inverse of powers of costs).

The widely studied Mallows model [43], based on Condorcet [44], flips the order of each candidate
pair (relative to a ground truth ranking) with a constant probability p ∈ (0, 1

2 ) [45, 46]. The process is
repeated if a linear order is not attained. In the context of metric distortion, a limitation of this model
is that it doesn’t account for the relative distance of candidates to the voter. For a comprehensive
review of RUM models, see Marden [47]. Critchlow et al. [48] does an axiomatic study of RUM
models; our axioms are grounded in metric distortion and are distinct from theirs.

Recently, there has been significant interest in smoothed analysis [49] of social choice. Here, a small
amount of randomness is added to problem instances and its effect is studied on the satisfiability of
axioms [50–53] and the computational complexity of voting rules [54–56]. Baumeister et al. [50]
term this model as being ‘towards reality,’ highlighting the need to study the randomness in the
election instance generation processes. Unlike smoothed analysis where the voter and candidate
positions are randomized, we consider these positions fixed, but the submitted votes are random given
these positions. The technical difference appears in the benchmark (the “optimal" outcome in the
denominator of the distortion is unchanged in our framework and changes in smoothed analysis).

2 Axioms and Model

Under probabilistic voting, the submitted preferences may no longer be consistent with the underlying
distances. For a distribution P(d) over σN , let qP(d)(i, j, j′) denote the induced marginal probability
that voter i ranks candidate j higher than j′. We focus on these marginal probabilities on pairwise
orders and provide axioms for classifying which qP(d)(·) are suitable for studying distortion.

Axiom 1 (Scale-Freeness (SF)). The probability qP(d)(·) must be invariant to scaling of d. That is,
for any tuple (i, j, j′) and any constant κ > 0, we must have qP(d)(i, j, j′) = qP(κd)(i, j, j′).
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Table 1: Axioms satisfied by commonly studied models of probabilistic voting
Axiom 1: SF Axiom 2: IOC Axiom 3: Strict Monotonocity

Mallows ✓ × ×
PL/BT with exponential in d × ✓ ✓
PL/BT with powers of d ✓ ✓ ✓
PQV ✓ ✓ ✓

Note that the metric distortion (Definition 2) for deterministic voting is scale-free. We want to retain
the same property in the probabilistic model as well. Conceptually, one may think of the voter’s
preferences as being a function of the relative (and not absolute) distances to the candidates.

Axiom 2 (Independence of Other Candidates (IOC)). The probability qP(d)(i, j, j′) must be
independent of the distance of voter i to all ‘other’ candidates, i.e., those in A \ {j, j′}.

This axiom extends Luce’s choice axioms [38], defined for selecting the top choice, to entire rankings.
IOC is reminiscent of the independence of irrelevant alternatives axiom for voting rules.
Axiom 3 (Strict Monotonicity (SM)). For every tuple (i, j, j′), for fixed distance d(i, j) > 0, the
probability qP(d)(i, j, j′) must be strictly increasing in d(i, j′) at all but at most finitely many points.

The monotonicity in d(i, j) follows since qP(d)(i, j′, j) = 1− qP(d)(i, j, j′). This axiom is natural.

In the Mallows model [43], qP(d)(·) was derived by Busa-Fekete et al. [57] and is as follows:

Mallows: qP(d)(i, j, j′) = h(rj′ − rj + 1, ϕ)− h(rj′ − rj , ϕ). (1)

Here h(k, ϕ) = k
(1−ϕk)

. Whereas rj and rj′ are the positions of j and j′ in the ground-truth (noiseless)
ranking, and the constant ϕ is a dispersion parameter. Observe that this model fails Axiom 2 since it
depends on the number of candidates between j and j′ in the noiseless ranking. It also fails Axiom 3
since it does not depend on the exact distances but only on the order of the distances.

Plackett-Luce Model: The PL model [37, 38] is ‘sequential’ in the following way. For each voter
i ∈ N , each candidate j ∈ A has a ‘strength’ si,j . In most of the literature on RUMs, a common
assumption is that si,j is the same for all voters i. However, we choose this more general model to
make it useful in the context of metric distortion. The voter chooses their top choice with probability
proportional to the strengths. Similarly, for every subsequent rank, they choose a candidate from
among the remaining ones with probabilities proportional to their strengths. In terms of the pairwise
order probabilities, the PL model reduces to the Bradley-Terry (BT) model [42], that is:

PL/BT: qP(d)(i, j, j′) =
si,j

si,j + si,j′
. (2)

Prima facie, in the metric distortion framework, any decreasing function of distance d(i, j) would
be a natural choice for si,j . However, not all such functions satisfy Axiom 1. The exponential
function is a popular choice in the literature employing BT or PL models. However, in general,

e−d(i,j)

e−d(i,j)+e−d(i,j′) ̸= e−2d(i,j)

e−2d(i,j)+e−2d(i,j′) , thus failing the Scale-Freeness Axiom 1.

On the other hand, observe that all functions s = d−θ for any θ ∈ (0,∞) satisfy our axioms. We use
the regime θ ∈ (1,∞) for technical simplicity in this work.

We also define the following class of functions “PQV” for qP(d)(·) motivated by Quantal Response
Theory [58] and its use in probabilistic voting [20]. Observe that PQV satisfies all our axioms.
Definition 3 (Pairwise Quantal Voting (PQV)). Let the relative preference r(i, j, j′) be the ratio of

distances, d(i,j′)
d(i,j) . For constant λ > 0, PQV is as follows: qP(d)(i, j, j′) = e−λ/r(i,j,j′)

e−λr(i,j,j′)+e−λ/r(i,j,j′) .

We now define a general class of functions for pairwise order probabilities in terms of the relative
preference (ratio of distances) r. Let G be a class of functions such that any G ∋ g : [0,∞)∪{∞} →
[0, 1] has the following properties.

1. g is continuous and twice-differentiable.
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Figure 1: A 1-d Euclidean example of voting probabilities. There are two candidates at 0 and 1. The
figure on the left shows the voter position between 0 and 1. In the right figure, the voter is in positions
to the left of 0. As the distance grows, both candidates look similar to the voter in the probabilistic
model but not in deterministic voting. The case of voter positions to the right of 1 is symmetric.

2. g(0) = 0. Further, g′(r) > 0 ∀r ∈ (0,∞) i.e. g(r) is strictly increasing in [0,∞).

3. Define 1
r as +∞ when r = 0. Then we must have g(r) + g( 1r ) = 1 ∀r ≥ 0.

4. There ∃c ∈ [0,∞) s.t. g′′(r) > 0 ∀r ∈ (0, c) i.e. g is convex in the open interval (0, c).

Observe that PL (with g(r) = rθ

1+rθ
, θ > 1) and PQV (with g(r) = e−λ/r

e−λr+e−λ/r , λ > 0) are in
G. Construction of distributions (if any exists) on rankings σN which generate pairwise order
probabilities qP(d)(i, j, j′) = g(d(i,j

′)
d(i,j) ) according to PQV is left for future work. We do not need it

for our technical derivations. For PL, these distributions are known from prior work [40].

We assume g ∈ G in the rest of the paper. Let M(N ∪A) denote the set of valid distance functions
on (N ,A). For any g and d ∈ M(N ∪A) let P̂(g)(d) denote the set of probability distributions on
σN for which the marginal pairwise order probabilities are g(d(i,j

′)
d(i,j) ). That is,

∀P ∈ P̂(g)(d), σN ∼ P =⇒ P[A ≻i B] = g

(
d(i, B)

d(i, A)

)
. (3)

We assume that all voters vote independently of each other. We now define metric distortion under
probabilistic voting as a function of g for a given m and n.

Definition 4 (Metric Distortion under Probabilistic Voting).

DIST(g)(f, n,m) := sup
N :|N |=n
A:|A|=m

sup
d∈M(N∪A)

sup
P∈P̂(g)(d)

EσN∼P [SC(f(σN ), d)]

min
A∈A

SC(A, d)
. (4)

DIST(g)(f) = supn,m DIST(g)(f, n,m) by supremizing over all possible n and m.

The expectation is both over the randomness in the votes and the voting rule f .

Observe that the distortion is a supremum over all distributions in P̂(g)(d). Since we focus on large
elections (with large n and relatively small m), we define DIST(g) as a function of m and n.

As in Fig. 1, consider the 1-d Euclidean space with candidate X at the origin and Y at 1. Observe
that g

(
x

1−x

)
and g

(
x

1+x

)
denote the probability that a voter located at a distance x from X votes

for Y when the voter is to the left and right of X respectively. Interestingly, this 1-d intuition extends
well for general metric spaces. Towards this, we define the following functions.

gMID(x) := g

(
x

1− x

)
∀x ∈ [0, 1) and gOUT(x) := g

(
x

1 + x

)
∀x ∈ [0,∞). (5)

Lemma 1. gMID(x)
x and gOUT(x)

x have unique local maxima in (0, 1) and (0,∞) respectively.
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Denote the unique maximisers of gMID(x)
x and gOUT(x)

x by x∗
MID and x∗

OUT respectively.

For simplifying notation, in the rest of the work, we use ĝMID for gMID(x
∗
MID)

x∗
MID

and ĝOUT for gOUT(x
∗
OUT)

x∗
OUT

.

In the analysis in the rest of the paper, we will have ĝMID and ĝOUT appear many times, so we note
these quantities for the PL and PQV models here. For the PL model with θ = 2, ĝMID =

√
2+1
2 ≈ 1.21

and ĝOUT =
√
2−1
2 ≈ 0.21. When θ = 4, ĝMID ≈ 1.42 and ĝOUT ≈ 0.06. When θ → ∞, ĝMID → 2

and ĝOUT → 0. This limit is where PL resembles deterministic voting.

For PQV with λ = 1, ĝMID ≈ 1.25 and ĝOUT = 0.18. When λ → ∞, ĝMID → 2 and ĝOUT → 0.

3 Distortion of Plurality Rule Under Probabilistic Voting

In this section, we give upper and lower bounds on the distortion of the Plurality rule [59] (PLU). In
the limit the number of voters n → ∞ (“large election”), our upper and lower bounds match and are
linear in the number of candidates m. Let B represent the candidate that minimizes the social cost
(referred to as ‘best’), and let {Aj}j∈[m−1] denote the set of other candidates.

3.1 Upper bound on the distortion of Plurality(PLU)

Theorem 1. For every ϵ > 0 and m ≥ 2 and n ≥ m2 we have

DIST(g)(PLU, n,m) ≤ m(m− 1) (ĝMID + ĝOUT) exp
( −n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

)
(6)

+max

(
mĝMID

(1− n−( 1
2−ϵ))

− 1,
mĝOUT

(1− n−( 1
2−ϵ))

+ 1

)
.

Further, lim
n→∞

DIST(g)(PLU, n,m) ≤ max (mĝMID − 1,mĝOUT + 1) .

To prove this theorem, we first give a lemma which upper bounds SC(W,d)
SC(B,d) under the constraint

that the expected number of voters that rank candidate W over B is given by α. This ratio will be
useful to bound the contribution of non-optimal candidate W to the distortion of PLU. We state an
optimization problem (7) below, which would be required to bound the ratio as a function of α.

Eα =



min
b,w∈Rn

≥0

∑n
i=1 bi∑n
i=1 wi

s.t.
n∑

i=1

g

(
bi
wi

)
≥ α

max
i

|wi − bi| ≤ min
i
(wi + bi)

∀α ≥ 0 (7)

Lemma 2. For any two candidates W,B ∈ A which satisfy
n∑

i=1

P[W ≻i B] = α, we have

SC(W,d)

SC(B, d)
≤ 1

opt(Eα)
≤ max

(n
α
ĝMID − 1,

n

α
ĝOUT + 1

)
. (8)

Our proof is via Lemmas 3 and 4. Lemma 3 shows that we can bound the ratio of social costs by the
inverse of the optimum value of Eα and Lemma 4 gives a lower bound on the optimum value of Eα.
Lemma 3. For any two candidates W,B ∈ A satisfying

∑n
i=1P[W ≻i B] = α, we have

SC(W,d)

SC(B, d)
≤ 1

opt(Eα)
. (9)

Proof. bi and wi in (7) represent the distances d(i, B) and d(i,W ). The last constraint is the triangle
inequality i.e. |d(i, B)− d(i,W )| ≤ d(B,W ) ≤ |d(i, B) + d(i,W )| for every voter i ∈ N .
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Consider the following linearized version of (7).

Eµ,α =



min
w,b∈Rn

≥0

(
n∑

i=1

bi

)
− µ

(
n∑

i=1

wi

)

s.t.
n∑

i=1

g

(
bi
wi

)
≥ α

|bi − wi| ≤ 1 ∀i ∈ [n]

bi + wi ≥ 1 ∀i ∈ [n]

∀0 ≤ µ ≤ 1, α ≥ 0. (10)

Lemma 4. opt(Eα) ≥ min
((

n
α ĝMID − 1

)−1
,
(
n
α ĝOUT + 1

)−1
)
.

Our proof uses Lemma 5 and is by solving a linearized version of (7) in (10). This is done by
introducing an extra non-negative parameter µ ≤ 1. Note that it is sufficient to consider µ ≤ 1 since
opt(Eα) ≤ 1 because B minimises the social cost by definition. We find the smallest µ ∈ (0, 1) such
that its objective is non-negative.

Lemma 5. If opt(Eµ,α) ≥ 0, then opt(Eα) ≥ µ.

Further, opt(Eµ,α) ≥ 0 if µ = min
((

n
α ĝMID − 1

)−1
,
(
n
α ĝOUT + 1

)−1
)

.

The first part follows since scaling each term by a constant r satisfies the constraints and also yields the
same objective. And thus we may replace the constraints by maxi |wi−bi| ≤ 1 and mini(wi+bi) ≥ 1
in equation (10). Further, the objective function is linearized as (

∑n
i=1 bi)− µ (

∑n
i=1 wi).

The proof of the second part is technical and has been moved to Appendix B. It involves introducing
a Lagrangian multiplier λ and demonstrating that the objective function is non-negative for a suitably
chosen λ. To establish this, we show that minimising the Lagrangian over the boundaries of the
constraint set given by |bi − wi| = 1 and bi + wi = 1 is sufficient. This requires a careful analysis.

The main technique used in proving Theorem 1 involves considering two cases for every non-optimal
candidate Aj : one where the expected number of voters ranking candidate Aj above B (call it αj)
exceeds a threshold of n

m − nϵ+1/2

m and one where it does not. In the first case, the ratio of social costs
of Aj and B is bounded using Lemma 2 that naturally gives a bound on contribution of candidate Aj

to the distortion. In the later case, we use Chernoff bound to bound the probability of Aj being the
winner and multiply it with the ratio of social costs of Aj and B to bound the distortion. The proof of
Theorem 1 is in Appendix C.

3.2 Lower bound on the distortion of Plurality

We now present a lower bound on the distortion of PLU for any m in the limit n tends to infinity. This
lower bound matches the upper bound of Theorem 1 in the limit. A full proof is in Appendix D. Note
that the proof has an adversarially chosen distribution over the rankings subject to the marginals on
pairwise relationships satisfying g (as in the definition of distortion under probabilistic voting 4).
This lower bound does not apply to the PL model, which has a specific distribution over rankings.

Theorem 2. For every m ≥ 2, limn→∞ DIST(g)(PLU, n,m) ≥ max (mĝMID − 1,mĝOUT + 1) .

Proof Sketch. The proof is by an example in an Euclidean metric space in R3. One candidate “C" is
at (1, 0, 0). The other m− 1 candidates are “good" and are equidistantly placed on a circle of radius
ϵ on the y − z plane centred at (0, 0, 0). We call them G := {G1, G2, . . . , Gm−1}.

We present sketches of two constructions below for every ϵ, ζ > 0.

Construction 1: Let qMID := g
(√

(x∗
MID)

2+ϵ2

1−x∗
MID

)
and aMID := 1

m−1

(
1 − 1+ζ

mqMID

)
. Each of the m −

1 candidates in G has ⌊aMIDn⌋ voters overlapping with it. The remaining voters (we call them
“ambivalent”) are placed at (x∗

MID, 0, 0). Clearly, each voter overlapping with a candidate votes for it
as the most preferred candidate with probability one. Each of the ambivalent voters votes as follows.
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– With probability qMID, vote for candidate C as the top choice and uniformly randomly permute the
other candidates in the rest of the vote.

– With probability 1− qMID, vote for candidate C as the last choice and uniformly randomly permute
the other candidates in the rest of the vote.

We show that the probability that C wins tends to 1 as n → ∞ and the distortion is mĝMID − 1.

Construction 2: We give a construction where the locations of the candidates are identical as in
Construction 1, and some voters are located with the “good" candidates. The ambivalent voters are at
(−x∗

OUT, 0, 0). We show that P[C wins] tends to 1 as n → ∞ and the distortion is mĝOUT + 1.

This result establishes that the distortion of Plurality is bound to increase linearly with m even under
probabilistic voting, and is therefore not a good choice when m is even moderately large.

4 Distortion of Copeland Rule Under Probabilistic Voting

We now bound the distortion of the Copeland Rule. We say that candidate W defeats candidate Y if
more than half of the voters rank W above Y .

Theorem 3. For every ϵ > 0,m ≥ 2 and n ≥ 4, we have

DIST(g)(COP, n,m) ≤ 4m(m− 1) exp
( −n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT)

2

+max
(( 2ĝMID

1− n−( 1
2−ϵ)

− 1
)2

,
( 2ĝOUT

1− n−( 1
2−ϵ)

+ 1
)2)

.

For every m ≥ 2, we have lim
n→∞

DIST(g)(COP, n,m) ≤ max
(
(2ĝMID − 1)

2
, (2ĝOUT + 1)

2 )
.

Proof Sketch. A Copeland winner belongs to the uncovered set in the tournament graph, as
demonstrated in [1, Theorem 15]. Recall that B denotes the candidate with the least social cost. For
a Copeland winner W , either W defeats B or it defeats a candidate Y who defeats B.

We now consider two exhaustive cases on candidate Aj and define event Ej for every j ∈ [m− 1]
by computing the expected fraction of votes on pairwise comparisons. The event Ej denotes the
existence of an at-most two hop directed path from a candidate Aj to candidate B for Copeland such
that the expected fraction of votes on all edges along that path exceed n

2 − n(1/2+ϵ)

2 .

If Ej holds true, we upper bound the ratio of social cost of candidate Aj and social cost of candidate
B using Lemma 2 which in-turn would give a bound on the distortion. Otherwise, we use union
bound and Chernoff’s bound to upper bound the probability of Aj being the winner. Multiplying the
probability bound with the ratio of social costs (one obtained from Lemma 2) leads to a bound on the
distortion. A detailed proof is in Appendix E.

5 Distortion of Random Dictator Rule Under Probabilistic Voting

We first give an upper bound on the distortion of RD; the proof is in Appendix F.

Theorem 4. DIST(g)(RD,m, n) ≤ (m− 1)ĝMID + 1.

We now give a lower bound on the distortion of RD. We do this by constructing an example.

Theorem 5. For m ≥ 3 and n ≥ 2, DIST(g)(RD,m, n) ≥ 2 + 1
g−1( 1

m−1 )
− 2

n .

Proof. We have a 1-D Euclidean construction. Let B be at 0 and all other candidates A \ {B} be at
1. m− 1 voters are at 0 and one voter V is at x̃ = g−1( 1

m−1 )/(1 + g−1( 1
m−1 )).

The ranking for V is generated as follows: pick a candidate from A \ {B} as the top rank uniformly
at random. Keep B on the second rank. Permute the remaining candidates uniformly at random for
the remaining ranks. Observe that the marginal pairwise order probabilities are consistent with the
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distance of V from B and each candidate in A\{B}. In particular g( x̃
1−x̃ ) =

1
m−1 . The distortion for

this instance is P[B wins]·1+P[B loses]· n−x̃
x̃ = n−1

n + 1
n

n−x̃
x̃ = 1+ 1

x̃−
2
n = 2+ 1

g−1( 1
m−1 )

− 2
n .

For g(r) = rθ

1+rθ
, we have g−1(t) = ( t

1−t )
1
θ . Then g−1( 1

m−1 ) = (m−2)−
1
θ , and the distortion lower

bound is DIST(g)(RD,m, n) ≥ 2+(m−2)
1
θ − 2

n , and limn→∞ DIST(g)(RD,m, n) ≥ 2+(m−2)
1
θ .

However, note that this result does not apply to the PL model! This is because the PL model has
a specific distribution on the rankings. In contrast, the above result is obtained by choosing an
adversarial distribution on rankings subject to the constraint that its marginals on pairwise relations
are given by g. In the PL model, P[Aj is top-ranked in σi] =

d(i,Aj)
−θ∑

Ak∈A d(i,Ak)−θ [45]. We have the

following result for the PL model. A proof via a similar construction as Theorem 5 is in Appendix G.

Theorem 6. Let DISTθ
PL(RD,m, n) denote the distortion when the voters’ rankings are generated

per the PL model with parameter θ. We have limn→∞ DISTθ
PL(RD,m, n) ≥ 1 + (m−1)1/θ

2 .

6 Numerical Evaluations
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Figure 2: Here, we illustrate how the distortion bounds on different voting rules vary with m and
with the randomness parameters of the two models, PL and PQV, in the limit n → ∞. Both the x and
y axes are on the log scale. We plot the upper bound for Copeland (Theorem 3), the lower bound for
RD (Theorem 5), and the matching bounds for Plurality (Theorem 1).

Recall that higher values of θ and λ correspond to lower randomness. From Figure 2, we observe that
under sufficient randomness, the more intricate voting rule Copeland outshines the simpler rule RD,
which only looks at a voter’s top choice. Moreover, its distortion is independent of m in the limit
n → ∞. This is in sharp contrast to RD, where the distortion is Ω(m1/θ) in the PL model, a sharp
rate of increase in m for low values of θ. The distortion of Plurality increases linearly in m.

An important observation is regarding the asymptotics when θ or λ increases. The distortion of RD
converges to its value under deterministic voting, i.e., 3. The distortion of Plurality also converges to
2m− 1, the same as in deterministic voting. Since our bound on Copeland is not tight, it converges
to 9 rather than 5. So far, in the study of metric distortion, the social choice community has looked
only at these asymptotic; here, we present insights available from looking at the ‘complete’ picture.
Interestingly, the distortion of RD increases with randomness, whereas that of Copeland decreases
up to a certain point and then increases again. The reason for the increases in the high randomness
regime is that the votes become too noisy to reveal the best candidate any more.

Since these plots have no abrupt transitions, this figure hints that smoothened analysis [52] (typically
done with small amounts of noise) is unlikely to give any new insights regarding metric distortion.
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7 Discussion and Future Work

We extend the metric distortion framework in social choice in an important way – by capturing the
bounded rationality and randomness in voters’ behaviour. Consideration of this randomness shows
that, in general, the original metric distortion framework is too pessimistic on important voting rules,
most notably on Copeland. On the other hand, the simplistic voting rule Random Dictator, which
attains a distortion of 3 (at least as good as any deterministic rule [1]), is not so good when we look at
the full picture – its distortion increases with the number of candidates in our model. Our framework
opens up opportunities to revisit the metric distortion problem with a closer-to-reality view of voters.
It may hopefully lead to the development of new voting rules that consider the randomness of voters’
behaviour. For example, Liu and Moitra [46] take a learning theory approach to design voting rules
under the assumption of random voting per the Mallows model. However, technical analysis in our
framework may be challenging because of the interplay of the geometric structure of voters’ positions
and the probabilistic nature of their votes.

Future Work An interesting extension would be to other tournament graph-based voting rules
(weighted or unweighted). Our techniques are well-suited for this class of rules since it is based on
the expected weights of the edges of the tournament graph. Closing the gap for the distortion of
Copeland would be useful for getting deeper insights. Another open problem is the characterization
of the set of distributions on rankings that induce the pairwise probabilities per PQV.
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A Proof of Lemma 1

Lemma (Restatement of Lemma 1). gMID(x)
x and gOUT(x)

x have unique local maxima in (0, 1) and (0,∞) respectively.

To prove Lemma 1, we first state and prove Lemma 6 which shows that gMID(x) and gOUT(x) change from convex to
concave in intervals (0, 1) and (0,∞) respectively.

Lemma 6. • There ∃c1 ∈ [0, 1] s.t. gMID(x) is convex in [0, c1] and concave in [c1, 1].

• There ∃c2 ∈ [0,∞) s.t. gOUT(x) is convex in [0, c2] and concave in [c2,∞).

Proof. Observe that g′′(x) < 0 for x ≥ 1.

Recall that gMID(x) = g
(

x
1−x

)
thus, g′MID(x) = g′

(
x

1−x

)
1

(1−x)2 and gMID(x) + gMID(1 − x) = 1 Thus, g′′MID(x) =

g′
(

x
1−x

)
2

(1−x)3 + g′′
(

x
1−x

)
1

(1−x)4 . Observe that g′′MID(0) > 0 which implies limx→1 g
′′
MID(x) < 0 and thus, there

must exist a c ∈ (0, 1) such that g′′MID(c) = 0.

Now we show that there cannot exist two distinct c1, c2 ∈ (0, 1) such that g′′MID(c1) = 0 and g′′MID(c2) = 0. We prove
this statement by contradiction assuming the contrary which implies that g′′MID(x) must have changed its sign twice.
However, since g′

(
x

1−x

)
> 0 we must have g′′( x

1−x ) changing its sign twice which is a contradiction since g′′(r) > 0

for r ∈ (0, c) and g′′(r) < 0 for r ∈ (c,∞).

Now consider gOUT(x) = g
(

x
1+x

)
we have g′OUT(x) = g′

(
x

1+x

)
1

(1+x)2 . Thus, g′′OUT(x) = −g′
(

x
1+x

)
2

(1+x)3 +

g′′
(

x
1+x

)
1

(1+x)4 . Using a similar approach, we can also prove the second point in the Lemma.

Using Lemma 6, we now prove Lemma 1 showing the existence of unique maximas of gMID(x)
x and gOUT(x)

x .

Proof of Lemma 1. Recall from Lemma 6 that gMID(x) is convex in [0, c1] and concave in [c1, 1].

Since the first derivative equals zero at every local maxima, we must have xg′MID(x)− g(x) = 0 for any local maxima
x. We now argue that such a maxima cannot exist in [0, c1]. Suppose such a maxima exists in that case, we must have
g′MID(x) =

gMID(x)−gMID(0)
x−0 for some x ∈ (0, c1). Applying LMVT in the interval [0, x]2, we must have some t ∈ (0, x)

s.t. g′MID(t) =
gMID(x)−gMID(0)

x−0 , thus implying g′MID(x) = g′(t) contradicting the fact that g′MID(r) is strictly increasing in
[0, c1].

Observe that gMID(t)− t gMID(c1)
c1

is zero at t = 0 and t = c1 and thus, by Rolle’s theorem, we have g′MID(x) =
gMID(c1)

c1
for

some x ∈ (0, c1). Since, g′MID(x) is increasing in [0, c1], we must have g′MID(c1) >
gMID(c1)

c1
. Observe limt→1

gMID(t)
t = 1

and gMID(c1)
c1

> 1. Also, we have d
dt

(
gMID(t)

t

)∣∣∣
t=c1

> 0 since c1g
′
MID(c1) > gMID(c1) implying gMID(t)/t is increasing

at t = c1. Thus, gMID(t)/t must have at least one local maxima x∗ in the open interval (c1,∞) and no local maxima
elsewhere.

We now argue that this local maxima x∗ is unique. Suppose we have two distinct local maximas at x1, x2 ∈ (c1,∞)
and thus, we have x1g

′
MID(x1)− gMID(x1) = 0 and x2g

′
MID(x2)− gMID(x2) = 0. Rolle’s theorem would imply that there

exists t ∈ (x1, x2)
3 s.t. tg′′MID(t) = 0 which is a contradiction since g′′MID(x) < 0 in (c1,∞).

Similarly, we can prove the result on the existence and uniqueness of maxima of the function
g( x

x+1 )
x .

B Proof of Lemma 5

Lemma (Restatement of Lemma 5). If opt(Eµ,α) ≥ 0, then opt(Eα) ≥ µ.

Further, opt(Eµ,α) ≥ 0 if µ = min
((

n
α ĝMID − 1

)−1
,
(
n
α ĝOUT + 1

)−1
)

.

2Observe that g(x)/x has a removable discontinuity at 0 since the limit is defined.
3W.L.O.G, we assume x1 < x2

14



Proof. To lower bound the optimal value of Eµ,α, we first pre-multiply the first constraint by λ (and substitute
bi
wi

= ri ∀i ∈ [n]) and thus define,

F (r,b, λ) =

(
n∑

i=1

bi

)
− µ

(
n∑

i=1

bi
ri

)
− λ

(
n∑

i=1

g(ri)− α

)
. (11)

Further, we define the set which satisfies the last two constraints in Eµ,α by C as

C := {(r,b) ∈ (Rn
≥0,Rn

≥0) : bi(1 + 1/ri) ≥ 1; |bi(1/ri − 1)| ≤ 1 ∀i ∈ [n]}. (12)

From the theory of Lagrangian, we have the following

opt(Eµ,α) ≥ min
(r,b)∈C

max
λ≥0

F (r,b, λ) ≥ max
λ≥0

min
(r,b)∈C

F (r,b, λ). (13)

Now for a fixed λ > 0, we minimise F (r,b, λ) over (r,b) ∈ C. Observe that for every i ∈ [n], it is sufficient to
minimise h(ri, bi) defined as follows.

h(ri, bi) := bi(1− µ/ri)− λ
(
g(ri)−

α

n

)
. (14)

Observe that the constraints in C can be written as bi ≥ ri
1+ri

and bi ≤ ri
|1−ri| .

Observe that for a given ri, the function h(ri, bi) is monotonic in bi and thus the optimum point must lie on the boundary
and first optimize over bi(1 + 1/ri) = 1 (call it CMID

i ) and |bi(1− 1/ri)| = 1 (call it COUT
i ) respectively.

Recall from Lemma 6 that there exists c1, c2 s.t. gMID(x) is convex in (0, c1) and concave in (c1, 1) and gOUT(x) is
convex in (0, c2) and concave in (c2,∞).

• Minimisation of h(ri, bi) over bi(1 + 1/ri) = 1.

We first substitute 1/ri = 1/bi − 1 in the function and thus, can write the function h(bi) = bi(µ+ 1)− µ−
λ
(
g
(

bi
1−bi

)
− α

n

)
= bi(µ+ 1)− µ− λ

(
gMID(bi)− α

n

)
.

Observe that on optimizing over bi, we obtain two local minima, one at bi = 0 and the other at bi = x̃MID(λ) ∈
(c1,∞) where x̃MID(λ) satisfies the following equations if λ ≥ 1+µ

g′
MID(c1)

. Otherwise, we have a unique minima
at bi = 0. 4

g′MID(x̃
MID(λ)) = max

(
1 + µ

λ
, g′MID(1

−)

)
and g′′MID(x̃

MID(λ)) < 0. (15)

Observe x̃MID(λ) > c1 since gMID is concave only in [c1, 1]. Also observe that since g′MID(x) is monotonically
increasing, x̃MID(λ) is monotonically increasing in λ.

• Minimisation of h(ri, bi) over bi|(1− 1/ri)| = 1.

On substituting, we write the function

h(bi) =

(1− µ)bi − µ− λ
(
g
(

bi
1+bi

)
− α

n

)
= (1− µ)bi − µ− λ

(
gOUT(bi)− α

n

)
if ri ≥ 1

(1− µ)bi + µ− λ
(
g
(

bi
bi−1

)
− α

n

)
(a)
= (1− µ)bi + µ− λ+ λ

(
gOUT(bi − 1) + α

n

)
otherwise

(16)

(a) follows from the fact that g(r) + g(1/r) = 1.

Since the second function has only a single minima at bi = 1, it is sufficient to consider only the first function
in the case ri ≥ 1.

Observe that on optimizing over bi, we obtain two local minima one at bi = 0 and one at bi = x̃OUT(λ) ∈
(c2,∞) where x̃OUT(λ) satisfies the equations if λ ≥ 1−µ

g′
OUT(c2)

. Otherwise, we have a unique minima at bi = 0.
5

g′OUT(x̃
OUT(λ)) =

(
1− µ

λ

)
and g′′OUT(x̃

OUT(λ)) < 0. (17)

4This follows from the fact that gMID(x) is monotonically decreasing in [c1, 1) and monotonically increasing in [0, c1).
5This follows from the fact that gOUT(x) is monotonically decreasing in [c2,∞) and monotonically increasing in [0, c2). Since

g′OUT(∞) = 0, the solution to (17) exists for every λ ∈
(

1−µ
g′OUT(c2)

,∞
)

.
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Thus, we have x̃OUT(λ) > c2 since gOUT is concave only in [c2,∞). Also observe that since g′OUT(x) is
monotonic, x̃OUT(λ) is monotonic in λ.

Since, this argument is true for every i ∈ [n], we obtain

min
(r,b)

F (r,b, λ) = n ·min

(
−µ+ λ

α

n
,(µ+ 1)x̃MID(λ)− µ− λ

(
gMID(x̃

MID(λ))− α

n

)
,

(1− µ)x̃OUT(λ)− µ− λ
(
gOUT(x̃

OUT(λ))− α

n

))
. (18)

Since x∗
MID is the local maximiser of gMID(x)

x , we have

gMID(x
∗
MID) = x∗

MIDĝMID and x∗
MID > c1. (19)

Similarly,
gOUT(x

∗
OUT) = x∗

OUTĝOUT and x∗
OUT > c2. (20)

For the purpose of this analysis, we define two functions δMID(λ) and δOUT(λ) below.

δMID(λ) = (µ+ 1)x̃MID(λ)− µ− λ
(
gMID(x̃

MID(λ))− α

n

)
. (21)

δOUT(λ) = (1− µ)x̃OUT(λ)− µ− λ
(
gOUT(x̃

OUT(λ))− α

n

)
. (22)

We also define

µ∗ : =min

((n
α
ĝMID − 1

)−1

,
(n
α
ĝOUT + 1

)−1
)
, and λ∗ := µ∗ n

α
. (23)

Recall that we aim to show opt(Eµ,α) ≥ 0 when µ = µ∗ and thus substitute µ = µ∗ in every subsequent
equation. Observe that it is sufficient to show δMID(λ∗) and δOUT(λ∗) are non-negative since this would imply that
maxλ≥0 min(r,b)∈C F (r,b, λ) is non-negative.

We now consider the following two exhaustive cases.

• Case 1: ĝMID − α
n > ĝOUT +

α
n . Observe from Equation (15),

g′MID(x̃
MID(λ∗)) = max

(
n

α

(
1

µ∗ + 1

)
, g′MID(1

−)

)
= g′MID(x

∗
MID)

(d)
=⇒ x̃MID(λ∗) = x∗

MID. (24)

(d) follows from the fact that both x̃MID(λ∗) and x∗
MID exceed c1 and g′MID(x) is monotonically decreasing for

x ≥ c1.

δMID(λ∗) = (µ∗ + 1)x̃MID(λ∗)− µ∗ − λ∗
(
gMID(x̃

MID(λ∗))− α

n

)
(b)

≥ (−µ∗ + λ∗α/n) + λ∗ (x̃MID(λ∗)g′MID(x̃
MID(λ∗))− gMID(x̃

MID(λ∗)))
(c)

≥ 0. (25)

(b) follows from g′MID(x̃
MID(λ∗)) = 1+µ∗

λ∗
6 as stated in Equation (15).

(c) follows from x̃MID(λ∗) = x∗
MID (in Equation (24)) and gMID(x

∗
MID) = x∗

MIDĝMID (in Equation (19)) and the
fact that µ∗ = λ∗ α

n . Now consider,

ĝOUT
(d)
=

gOUT(x
∗
OUT)

x∗
OUT

(e)

≤ gMID(x
∗
MID)

x∗
MID

− 2α/n
(g)
=

1− µ

λ∗
(h)
=⇒ g′OUT(x

∗
OUT) ≤ g′OUT(x̃

OUT(λ∗))
(i)
=⇒ x∗

OUT ≥ x̃OUT(λ∗).

(d) follows from the fact that x∗
OUT is the local maximiser of gOUT(x)/x,

(e) follows from the fact that ĝMID − α
n > ĝOUT +

α
n in Case 1.

(g) follows from the definition of λ∗ and that µ = λ∗ α
n .

6This follows from the fact that 1+µ∗

λ∗ = ĝMID = g′(x∗
MID) ≥ g′MID(1

−)
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(h) follows from the constraint in (17).

(i) follows from the fact that g′OUT(x) is monotonically decreasing in x in [c2,∞).

δOUT(λ∗) = (1− µ)x̃OUT(λ∗)− µ− λ∗
(
gOUT(x̃

OUT(λ∗))− α

n

)
(j)
=
(
−µ+ λ∗α

n

)
+ λ∗(x̃OUT(λ∗)g′OUT(x̃

OUT(λ∗))− gOUT(x̃
OUT(λ∗)))

(k)

≥ 0 + 0 ≥ 0. (26)

(j) follows from g′OUT(x̃
OUT(λ)) = 1−µ

λ as stated in Equation (17), and

(k) follows from the following reasons:

– Observe that xg′OUT(x)− gOUT(x) is monotonically decreasing in [c2,∞) as gOUT is concave in this region.
However, since x∗

OUT ≥ x̃OUT(λ∗) ≥ c2, we have

(x̃OUT(λ∗)g′OUT(x̃
OUT(λ∗))− gOUT(x̃

OUT(λ∗))) ≥ x∗
OUTĝOUT − gOUT(x

∗
OUT) = 0

– λ∗ = µ∗ n
α follows from the definition of λ∗.

Thus, using (25) and (26) we show that for the chosen value of λ∗ = µ∗ n
α , we have

min(r,w)∈C F (r,w, λ∗) ≥ 0 implying from (13) that opt(Eµ,α) ≥ 0.

• Case 2: ĝMID − α
n ≤ ĝOUT +

α
n

Choosing λ∗ = µ∗ n
α , we can prove opt(Eµ,α) ≥ 0 in a very similar manner whenever µ = µ∗.

C Proof of Theorem 1

Theorem (Restatement of Theorem 1). For every ϵ > 0 and m ≥ 2 and n ≥ m2 we have

DIST(g)(PLU, n,m) ≤ m(m− 1) (ĝMID + ĝOUT) exp
( −n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

)
(27)

+max

(
mĝMID

(1− n−( 1
2−ϵ))

− 1,
mĝOUT

(1− n−( 1
2−ϵ))

+ 1

)
.

Further, lim
n→∞

DIST(g)(PLU, n,m) ≤ max (mĝMID − 1,mĝOUT + 1) .

Proof. Recall that candidate B ∈ A minimises the social cost. The other candidates are denoted by {Aj}j∈[m−1].

DIST(g)(PLU, n,m) = sup
d∈M(N∪A)

m−1∑
j=1

P[Aj wins]
SC(Aj , d)

SC(B, d)
+ P[B wins]

 (28)

For every j ∈ [m− 1], we now bound the probability of Aj being the winner. This event implies that at least n
m voters

choose Aj as the top preference, implying that the same voters rank Aj over B. Further, we now define Bernoulli
random variables {Yi,j}ni=1 each denoting the event that voter i ranks candidate Aj over B. Recall from Equation 3,

Yi,j ∼ Bern
(
g
(

d(i,B)
d(i,Aj)

))
. Therefore,

P[Aj wins] ≤ P

(
n∑

i=1

Yi,j ≥
n

m

)
. (29)

Let αj be the expectation of the random variable
∑n

i=1 Yi,j i.e. the expected number of voters ranking Aj over B.

αj :=

n∑
i=1

E[Yi,j ] =

n∑
i=1

g

(
d(i, B)

d(i, Aj)

)
for every j ∈ [m− 1]. (30)
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Now we use Chernoff bounds on the sum of Bernoulli random variable for every j ∈ [m− 1] when αj ≤ n
m − n(1/2+ϵ)

m
to bound the probability of Aj being the winner.

If αj ≤
n

m
− n(1/2+ϵ)

m
we have,

P[Aj wins] ≤ P

(
n∑

i=1

Yi,j ≥
n

m

)
= P

(
n∑

i=1

Yi,j ≥ αj

(
1 +

n

mαj
− 1

))
(31)

(a)

≤

(
e
( n
mαj

−1)

( n
mαj

)n/mαj

)αj

(32)

=
(mαj

n

) n
m

e
n
m−αj (33)

≤ mαj

n

(
mαj

n
exp

(
− αj

n/m− 1

))( n
m−1)

e
n
m (34)

(c)

≤ mαj

n
e

n
m

(1− n−( 1
2−ϵ)

)
exp

−
n
m − n( 1

2
+ϵ)

m

n/m− 1

 n
m−1

(35)

=
mαj

n

(
1− n−( 1

2−ϵ)
)(n/m−1)

exp

(
n( 1

2+ϵ)

m

)
(36)

(d)

≤ mαj

n
exp

(
−2n−( 1

2−ϵ)(n/m− 1)

2− n−( 1
2−ϵ)

+
n( 1

2+ϵ)

m

)
(37)

=
mαj

n
exp

(
−n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

)
. (38)

(a) follows from applying the Chernoff bound. We restate the bound from [60] below.

Suppose X1, X2, . . . , Xn be independent Bernoulli random variables with P(Xi) = µi for every i ∈ [n] and µ :=∑n
i=1 µi, then we have

P(
∑
i

Xi ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ

(39)

(c) holds since xe−x is increasing in (0, 1) and because α
n/m−1 ≤ 1 and α ≤ n

m − n( 1
2
+ϵ)

m , the maxima is attained at

α = n
m − n( 1

2
+ϵ)

m . (d) holds since log(1 + x) ≤ 2x
2+x for −1 < x ≤ 0.

Let S := {j ∈ [m− 1] : αj <
n
m − n(1/2+ϵ)

m } i.e. S denotes the indices of candidates with αj less than n
m − n(1/2+ϵ)

m .

Now using Lemma 2 and αj ≥ n
m − n(1/2+ϵ)

m for every j ∈ [m− 1] \ S, we have

SC(Aj , d)

SC(B, d)
≤ max

(
mĝMID

(1− n−(1/2−ϵ))
− 1,

mĝOUT

(1− n−(1/2−ϵ))
+ 1

)
(40)

We now have
DIST(g)(PLU, n,m)

= sup
d∈M(N∪A)

( ∑
j∈[m−1]\S

(
P[Aj wins]

SC(Aj , d)

SC(B, d)

)
+ P[B wins] +

∑
j∈S

(
P[Aj wins]

SC(Aj , d)

SC(B, d)

))
(a)

≤ max

(
max

j∈[m−1]\S

SC(Aj , d)

SC(B, d)
, 1

)
+
∑
j∈S

(
max

(
n

αj
ĝMID − 1,

n

αj
ĝOUT + 1

)
mαj

n
exp

(
−n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

))
(b)

≤ m(m− 1) (ĝMID + ĝOUT) exp

(
−n( 1

2+ϵ) + 2m

(2n( 1
2−ϵ) − 1)m

)
+max

(
mĝMID

(1− n−(1/2−ϵ))
− 1,

mĝOUT

(1− n−(1/2−ϵ))
+ 1

)
.

18



(a) follows from the following observations.

• Apply Lemma 2 to bound SC(Aj ,d)
SC(B,d) . Since αj ≤ n

m − n(1/2+ϵ)

m ∀j ∈ S, apply Equation (31) to bound P[Aj wins].

•
∑

j∈[m−1]\S

(
P[Aj wins] SC(Aj ,d)

SC(B,d)

)
+ P[B wins] ≤ max

(
max

j∈[m−1]\S

SC(Aj ,d)
SC(B,d) , 1

)
.

(b) follows from the fact that |S| ≤ m− 1 , max(a, b) ≤ a+ b, and applying Equation (40).

D Proof of Theorem 2

Theorem (Restatement of Theorem 2). For every m ≥ 2, limn→∞ DIST(g)(PLU, n,m) ≥
max (mĝMID − 1,mĝOUT + 1) .

Proof. The proof is by an example in an Euclidean metric space in R3. One candidate “C" is at (1, 0, 0). The other
m− 1 candidates are “good" and are equidistantly placed on a circle of radius ϵ on the y − z plane centred at (0, 0, 0).
We call them G := {G1, G2, . . . , Gm−1}.

We present two constructions below for every ϵ, ζ > 0.

Construction 1: Let qMID := g
(√

(x∗
MID)

2+ϵ2

1−x∗
MID

)
and aMID := 1

m−1

(
1− 1+ζ

mqMID

)
. Each of the m− 1 candidates in G has

⌊aMIDn⌋ voters overlapping with it. The remaining voters (we call them “ambivalent”) are placed at (x∗
MID, 0, 0). Clearly,

each voter overlapping with a candidate votes for it as the most preferred candidate with probability one. Each of the
ambivalent voters votes as follows.

– With probability qMID, vote for candidate C as the top choice and uniformly randomly permute the other candidates in
the rest of the vote.

– With probability 1−qMID, vote for candidate C as the last choice and uniformly randomly permute the other candidates
in the rest of the vote.

Observe that this satisfies the pairwise probability criterion in Equation 3. Since limn→∞⌊an⌋/n = a and that the
distance of a candidate in G from any non-ambivalent voter is at most 2ϵ, we have that for every j ∈ [m− 1],

lim
n→∞

SC(C, d)

SC(Gj , d)
≥ (1− x∗

MID)(1− (m− 1)aMID) + (m− 1)aMID

√
1 + ϵ2

(1− (m− 1)aMID)
√
(x∗

MID)
2 + ϵ2 + 2(m− 2)aMIDϵ

(41)

=
(mqMID − (1 + ζ))

√
1 + ϵ2 + (1 + ζ)(1− x∗

MID)

(1 + ζ)
√
(x∗

MID)
2 + ϵ2 + 2(m− 2)aMIDϵ

. (42)

Clearly every candidate in G minimises the social cost and now we show that lim
n→∞

P[C wins] = 1.

Let Bernoulli random variables {Yi}ni=1 denote the events that voter i ∈ N ranks candidate C at the top. Here,∑n
i=1 P[Yi = 1] = qMID(n− (m− 1)⌊aMIDn⌋) and thus

lim
n→∞

n∑
i=1

P[Yi = 1]

n
=

1 + ζ

m
.

By the law of large numbers, we have that P[
∑

i Yi ≥ n
m ] = 1 as n → ∞. Since every candidate in G is equally likely

to win, the event
∑

i Yi ≥ n
m implies the event that C is the winner and thus, limn→∞ P[C wins] = 1. Thus,

lim
n→∞

DIST(g)(PLU, n,m) ≥ (mqMID − (1 + ζ))
√
1 + ϵ2 + (1 + ζ)(1− x∗

MID)

(1 + ζ)
√

(x∗
MID)

2 + ϵ2 + 2(m− 2)aMIDϵ
. (43)

Construction 2: Let qOUT := g

(√
(x∗

OUT)
2+ϵ2

1+x∗
OUT

)
and aOUT := 1

m−1

(
1− 1+ζ

mqOUT

)
. Each candidate in G has ⌊aOUTn⌋ voters

overlapping with it, and the remaining “ambivalent" voters are at (−x∗
OUT, 0, 0).

Clearly, each voter overlapping with a candidate votes for it as the most preferred candidate with probability one. Each
of the ambivalent voters votes as follows.
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• With probability qOUT, vote for candidate C as the top choice and uniformly randomly permute the other
candidates in the rest of the vote.

• With probability 1− qOUT, vote for candidate C as the last choice and uniformly randomly permute the other
candidates in the rest of the vote.

This satisfies the pairwise probability criterion in Equation 3. For every j ∈ [m− 1],

lim
n→∞

SC(C, d)

SC(Gj , d)
≥ (1 + x∗

OUT)(1− (m− 1)aOUT) + (m− 1)aOUT

√
1 + ϵ2

(1− (m− 1)aOUT)
√
(x∗

OUT)
2 + ϵ2 + 2(m− 2)aOUTϵ

(44)

=
(1 + ζ)(1 + x∗

OUT) + (mqOUT − (1 + ζ))
√
1 + ϵ2

(1 + ζ)
√
(x∗

OUT)
2 + ϵ2 + 2(m− 2)aOUTϵ

. (45)

Clearly, every candidate in G minimises the social cost. Now, we show that lim
n→∞

P[C wins] = 1.

Let Bernoulli random variables {Yi}ni=1 denote the events that voter i ∈ N ranks candidate C at the top. We have∑n
i=1 P[Yi = 1] = qMID(n− (m−1)⌊an⌋) and thus, limn→∞

∑n
i=1 P[Yi=1]

n = 1+ζ
m . Applying the law of large numbers,

we get that P[
∑
i

Yi ≥ n
m ] = 1 as n tends to ∞. However since every candidate in G is equally likely to win, the event∑

i Yi ≥ n
m corresponds to the event that C is the winner and thus, limn→∞ P[C wins] = 1. Therefore we have,

lim
n→∞

DIST(g)(PLU, n,m) ≥ (mqOUT − (1 + ζ))
√
1 + ϵ2 + (1 + ζ)(1 + x∗

OUT)

(1 + ζ)
√
(x∗

OUT)
2 + ϵ2 + 2(m− 2)aOUTϵ

. (46)

On applying the limit ϵ, ζ → 0 and substituting for qMID and qOUT, we get the desired lower bound by combining the
results from the two constructions.

E Proof of Theorem 3

Theorem 7. Restatement of Theorem 3 For every ϵ > 0,m ≥ 2 and n ≥ 4, we have

DIST(g)(COP, n,m) ≤ 4m(m− 1) exp
( −n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT)

2

+max
(( 2ĝMID

1− n−( 1
2−ϵ)

− 1
)2

,
( 2ĝOUT

1− n−( 1
2−ϵ)

+ 1
)2)

.

For every m ≥ 2, we have lim
n→∞

DIST(g)(COP, n,m) ≤ max
(
(2ĝMID − 1)

2
, (2ĝOUT + 1)

2 )
.

Proof. Recall that B ∈ A minimises the social cost, and {Aj}j∈[m−1] denotes the set A \B.

DIST(g)(COP, n,m) = sup
d∈M(N∪A)

m−1∑
j=1

P[Aj wins]
SC(Aj , d)

SC(B, d)
+ P[B wins]

 (47)

Consider a Copeland winner W . As noted by prior work [1], W must be in the uncovered set of the tournament graph,
and one of the following two cases must be true.

• W defeats B.

• There exists a candidate Y ∈ A s.t. W defeats Y and Y defeats B.

For every j ∈ [m − 1], we now bound the probability of Aj being the winner. For every j ∈ [m − 1], we define
Bernoulli random variables {Yi,j}ni=1 denoting the event that voter i ranks candidate Aj over candidate B. From

Equation 3, we have that Yi,j ∼ Bern
(
g
(

d(i,Aj)
d(i,B)

))
. For every distinct j, k ∈ [m− 1], we define Bernoulli random

variables {Zi,j,k}ni=1 denoting the event that voter i ranks candidate Aj over Ak. Zi,j,k ∼ Bern(g
(

d(i,Ak)
d(i,Aj)

)
).
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Observe that

P[Aj wins] ≤ P

 n∑
i=1

Yi,j ≥
n

2

⋃
k∈[m−1]\{j}

(
n∑

i=1

Zi,j,k ≥ n

2
∩

n∑
i=1

Yi,k ≥ n

2

) . (48)

Let αj denote the expected value of the random variable
∑n

i=1 Yi,j , i.e., the expected number of voters who rank
candidate Aj over B.

αj :=

n∑
i=1

E[Yi,j ] =

n∑
i=1

g

(
d(i, B)

d(i, Aj)

)
for every j ∈ [m− 1]. (49)

Let βj,k denote the expected value of the random variable
∑n

i=1 Zi,j,k, i.e., the expected number of voters who rank
candidate Aj over Ak.

βj,k :=

n∑
i=1

E[Zi,j,k] =

n∑
i=1

g

(
d(i, Ak)

d(i, Aj)

)
for every j ∈ [m− 1]. (50)

Similar to Equation (31), we have the following bound:

If αj ≤
n

2
− n(1/2+ϵ)

2
, we have

P

(
n∑

i=1

Yi,j ≥
n

2

)
= P

(
n∑

i=1

Yi,j ≥ αj

(
1 +

n

2αj
− 1

))
(51)

(a)

≤

(
e
( n
2αj

−1)

( n
2αj

)n/2αj

)αj

(52)

≤
(
2αj

n

)2(
mαj

n
exp

(
− αj

n/2− 2

))(n
2 −2)

e
n
m (53)

(c)

≤
(
2αj

n

)2

e
n
2

(1− n−( 1
2−ϵ)

)
exp

−
n
2 − n( 1

2
+ϵ)

2

n/2− 2

n
2 −2

(54)

=

(
2αj

n

)2 (
1− n−( 1

2−ϵ)
)(n/2−2)

exp

(
n( 1

2+ϵ)

2

)
(55)

(d)

≤
(
2αj

n

)2

exp

(
−2n−( 1

2−ϵ)(n/2− 2)

2− n−( 1
2−ϵ)

+
n( 1

2+ϵ)

2

)
(56)

=

(
2αj

n

)2

exp

(
−n( 1

2+ϵ) + 8

(2n( 1
2−ϵ) − 1)2

)
(57)

From Equation (31) in the proof of Theorem 1, we have

P

(
n∑

i=1

Yi,j ≥
n

2

)
≤
(
2αj

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
if αj ≤

n

2
− n(1/2+ϵ)

2
. (58)

Similarly, P

(
n∑

i=1

Zi,j,k ≥ n

2

)
≤
(
2βj,k

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
if βj,k ≤ n

2
− n(1/2+ϵ)

2
. (59)

Consider two exhaustive cases on candidate Aj and define an event Ej for every j ∈ [m− 1]. We compute the expected
fraction of votes on pairwise comparisons. The event Ej denotes the existence of an at-most two hop directed path
from a candidate Aj to candidate B for Copeland such that the expected fraction of votes on all edges along that path
exceed n

2 − n(1/2+ϵ)

2 . Recall that we only considered one hop path for the case of PLU in the proof of Theorem 1.
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Ej :=

(
αj ≥

n

2
− n(1/2+ϵ)

2

) ⋃
k∈[m−1]\{j}

((
βj,k ≥ n

2
− n(1/2+ϵ)

2

)⋂(
αk ≥ n

2
− n(1/2+ϵ)

2

))
. (60)

If Ej holds true, we can directly upper bound the ratio of the social cost of candidate Aj to the social cost of candidate
B using Lemma 2, which in turn provides a bound on the distortion. If Ej does not hold, we apply the union bound and
Chernoff’s bound to upper bound the probability of Aj being the winner. By multiplying this probability bound with
the ratio of social costs obtained from Lemma 2, we derive a bound on the distortion.

Define S := {j ∈ [m − 1] : Ej is not true}. Furthermore, we define K1(j) := {j ∈ [m − 1] : αk ≥ βj,k} and
K2(j) := {j ∈ [m− 1] : αk < βj,k} denotes complement of K1(j) for every j ∈ [m].

From Equations (58) and (59), both of the following conditions 1 and 2 are satisfied for every j ∈ S.

1. P
(∑n

i=1 Yi,j ≥ n
2

)
≤
(

2αj

n

)2
exp

(
−n( 1

2
+ϵ)+8

2(2n( 1
2
−ϵ)−1)

)
2. For every k ∈ [m− 1] \ {j},

P
(∑n

i=1 Zi,j,k ≥ n
2

)
≤
(

2βj,k

n

)2
exp

(
−n( 1

2
+ϵ)+8

2(2n( 1
2
−ϵ)−1)

)
if k ∈ K1(j)

and, P
(∑n

i=1 Yi,k ≥ n
2

)
≤
(
2αk

n

)2
exp

(
−n( 1

2
+ϵ)+8

2(2n( 1
2
−ϵ)−1)

)
if k ∈ K2(j).

Furthermore, we define γj := max

(
max

k∈[m−1]\{j}
(min(αk, βj,k)) , αj

)
.

Since, for every Copeland winner W , it must either defeat B or there exists a Y ∈ A s.t. W defeats Y and Y defeats B.
Using union bound for every j ∈ S, we have

P[Aj wins] ≤ P

[
n∑

i=1

Yi,j ≥
n

2

]
+

∑
k∈[m−1]\{j}

P

[(
n∑

i=1

Yi,k ≥ n

2

)
∩

(
n∑

i=1

Zi,j,k ≥ n

2

)]
if j ∈ S

≤
(
2αj

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
+

∑
k∈K2(j)

(
2αk

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)

+
∑

k∈K1(j)

(
2βj,k

n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
if j ∈ S

≤m

(
2γj
n

)2

exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
if j ∈ S. (61)

The last inequality follows from the definition of γj .

Furthermore from Lemma 2 and the definition of γj , 7 we have

SC(Aj , d)

SC(B, d)
≤
(
max

(
n

γj
ĝMID − 1,

n

γj
ĝOUT + 1

))2

(62)

Using Equation (62) and (61) and applying max(a, b) ≤ a+ b, we have

P[Aj wins]
SC(Aj , d)

SC(B, d)
≤ 4m exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT)

2 if j ∈ S. (63)

7This follows on splitting SC(Aj ,d)

SC(B,d)
=

SC(Aj ,d)

SC(Ak,d)
× SC(Ak,d)

SC(B,d)
and applying the lemma separately. We further use the fact that

1
γ
= min

(
min

k∈[m−1]\{j}

(
max( 1

αk
, 1
βj,k

)
)
, 1
αj

)

22



Recall that for every j ∈ [m− 1] \ S, Ej is satisfied. Let us further denote

Êj := αj ≥
n

2
− n(1/2+ϵ)

2
and D̂j,k :=

(
βj,k ≥ n

2
− n(1/2+ϵ)

2

)
.

Observe that Ej being satisfied implies either a) Êj is satisfied or b) ∃k ∈ [m− 1] \ {j} s.t Êk and D̂j,k are satisfied.
We consider both cases separately.

Suppose Êj is satisfied for some j ∈ [m− 1] \ S. Then we have from Lemma 2,

SC(Aj , d)

SC(B, d)
≤ max

(
2ĝMID

(1− n−(1/2−ϵ))
− 1,

2ĝOUT

(1− n−(1/2−ϵ))
+ 1

)
. (64)

Now we consider case (b) where Êk and D̂j,k are both satisfied for some k ∈ [m− 1] \ {j}. From Lemma 2 we have,

SC(Aj , d)

SC(B, d)
≤ max

((
2ĝMID

(1− n−(1/2−ϵ))
− 1

)2

,

(
2ĝOUT

(1− n−(1/2−ϵ))
+ 1

)2
)
. (65)

Now combining Equations (63), (64), and (65), we have for any metric space d ∈ M(N ∪A),

DIST(g)(COP, n,m) ≤

(∑
j∈S

(
P[Aj wins]

SC(Aj , d)

SC(B, d)

)
+ P[B wins] +

∑
j∈[m−1]\S

(
P[Aj wins]

SC(Aj , d)

SC(B, d)

))
(a)

≤ 4(m− 1)m exp

(
−n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT) + max

(
max

j∈[m−1]\S

SC(Aj , d)

SC(B, d)
, 1

)
(b)

≤ 4(m− 1)m exp
( −n( 1

2+ϵ) + 8

2(2n( 1
2−ϵ) − 1)

)
(ĝMID + ĝOUT) + max

(( 2ĝMID

(1− n−(1/2−ϵ))
− 1
)2

,
( 2ĝOUT

(1− n−(1/2−ϵ))
+ 1
)2)

.

(a) follows from Equation (61) and the fact that
∑

j∈S

(
P[Aj wins] SC(Aj ,d)

SC(B,d)

)
+P[B wins] ≤ max

(
max
j∈S

SC(Aj ,d)
SC(B,d) , 1

)
.

(b) follows from combining Equations (63), (64), and (65).

F Proof of Theorem 4

Theorem (Restatement of Theorem 4). DIST(g)(RD,m, n) ≤ (m− 1)ĝMID + 1.

Proof. The probability of voter i voting for candidate W as its top candidate is upper bounded by g
(

d(i,B)
d(i,W )

)
which is

the probability that W is ranked over B. Therefore, under RD, the probability of W winning satisfies:

P[W wins] ≤ 1

n

(
n∑

i=1

g

(
d(i, B)

d(i,W )

))
. (66)

Recall that we define the set of candidates in A \ B as {A1, A2, . . . , Am−1}. In the rest of the analysis we denote
d(i, Aj) by yi,j (for all j ∈ [m − 1]) and d(i, B) by bi for every i ∈ [n]. We also denote d(B,Aj) by zj for every
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j ∈ [m− 1]. Now for every metric d, we bound the distortion as follows.

DIST(g)(RD,m, n) ≤
m−1∑
j=1

(
P[Aj wins]

∑n
i=1 yi,j∑n
i=1 bi

)
+ (1−

m−1∑
j=1

P[Aj wins]) (67)

=

m−1∑
j=1

P[Aj wins]
(∑n

i=1 yi,j∑n
i=1 bi

− 1

)
+ 1 (68)

(a)

≤
m−1∑
j=1

1

n

(
n∑

i=1

g

(
bi
yi,j

)) ∑n
i=1(yi,j − bi)∑n

i=1 bi
+ 1 (69)

≤
m−1∑
j=1

1

n

(
n∑

i=1

g

(
bi/zj
yi,j/zj

)) ∑n
i=1(yi,j/zj − bi/zj)∑n

i=1 bi/zj
+ 1 (70)

(d)

≤
m−1∑
j=1

(∑n
i=1 g

(
bi/zj
yi,j/zj

))
∑n

i=1 bi/zj
+ 1 (71)

(e)

≤ (m− 1)
g
(

x∗
MID

1−x∗
MID

)
x∗

MID

+ 1 = (m− 1)ĝMID + 1. (72)

(a) follows from Equation (66).

(d) follows from the fact that yi,j − bi ≤ zj which follows from triangle inequality.

(e) follows from the following arguments by considering two cases namely bi
zj

≤ 1 and bi
zj

≥ 1.

When bi
zj

≤ 1 and thus, yi,j

zj
≥ 1− bi

zj
from triangle inequality. Similarly, we have yi,j

zj
≥ bi

zj
− 1 when bi

zj
≥ 1. Thus,

g
(

bi/zj
yi,j/zj

)
bi/zj

≤ max

(
sup

x∈(0,1)

g( x
1−x )

x
, sup
x∈(1,∞)

g( x
x−1 )

x

)
for every i ∈ [n] (73)

=⇒

∑n
i=1 g

(
bi/zj
yi,j/zj

)
∑n

i=1 bi/zj
≤ max

g
(

x∗
MID

1−x∗
MID

)
x∗

MID

, 1

 . (74)

The last inequality follows from the fact that
g( x

x−1 )

x ≤ 1 when x ≥ 1. Further, we have ĝMID ≥ 1 for all valid g.

G Proof of Theorem 6

Theorem (Restatement of Theorem 6). Let DISTθ
PL(RD,m, n) denote the distortion when the voters’ rankings are

generated per the PL model with parameter θ. We have limn→∞ DISTθ
PL(RD,m, n) ≥ 1 + (m−1)1/θ

2 .

Proof. We have a 1-D Euclidean construction. Let B be at 0 and all other candidates A\ {B} be at 1. m− 1 voters are
at 0, and one voter is at t. We will set t later by optimizing for the distortion.

The distortion for this instance is P[B wins] · 1 + P[B loses] · n−t
t = n−1

n + 1
n

t−θ

t−θ+(m−1)(1−t)−θ +

1
n

(m−1)(1−t)−θ

t−θ+(m−1)(1−t)−θ
n−t
t . We drop the terms which are O(1/n) to obtain 1 + (m−1)(1−t)−θ

t(t−θ+(m−1)(1−t)−θ)
. This simplifies to

1 + (m−1)tθ−1

(1−t)θ+(m−1)tθ
. This is lower bounded by 1 + (m−1)tθ−1

1+(m−1)tθ
. Setting t = (m− 1)−1/θ, we obtain a distortion lower

bound of 1 + (m−1)1/θ

2 .
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