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The problem of fairly allocating indivisible resources among agents with differing preferences has been
extensively studied in recent years, giving rise to several fairness concepts. While the theoretical aspects of such
concepts have been thoroughly investigated, their perceived fairness by stakeholders is not well understood.
In this work, we examine the perceived fairness of two relaxations of envy-freeness: envy-freeness up to one
good (EF1), a counterfactual notion, and envy-freeness up to 𝑘 hidden goods (HEF-𝑘), an epistemic notion. Our
main contribution is a framework for conducting human experiments to evaluate human perceptions of different
notions of fairness. Through extensive crowdsourced experiments, we demonstrate that HEF-𝑘 allocations are
perceived to be fairer than two popular variants of EF1.

1 INTRODUCTION
Dividing resources fairly among agents with subjective preferences is a significant aim in economics
and computer science research. Despite significant interest in the theoretical and algorithmic aspects
of fairness (see e.g., [Amanatidis et al., 2022, Aziz et al., 2022, Moulin, 2019]), little has been done
to investigate their practical suitability among human subjects. The perception of fairness has been
recently studied in the context of loan decisions [Saxena et al., 2019] and within machine learning
[Srivastava et al., 2019]. Yet, in the context of fair allocation of resources, it is unclear which fairness
concepts are perceived to be fairer.

Our task is to fairly partition a set of indivisible goods and assign bundles to the agents. One of
the gold standards of fairness, envy-freeness (EF), requires that each agent weakly prefers her own
bundle to those of all others according to her own subjective valuation [Foley, 1967]. EF is a natural
and compelling solution concept because it does not rely on interpersonal utility comparisons and
eliminates the need for identifying which agent derives the most benefit from a bundle of resources.1

However, EF allocations of indivisible goods do not always exist and determining their existence is
computationally intractable [Lipton et al., 2004]. In light of the impossibility of guaranteeing EF
exactly, several relaxation of EF have been proposed. This motivates the following research question:

Which relaxation of envy-freeness for allocating indivisible goods is perceived to be
fairer by individuals?

In this paper, we compare two prominent variants of EF. First, envy-freeness up to one good (EF1)
is based on the counterfactual thinking that any pairwise envy can be eliminated by the hypothetical
removal of a single good from the envied agent’s bundle [Budish, 2011]. An EF1 allocation always
exists and can be computed in polynomial time [Lipton et al., 2004]. Second, envy-freeness up to 𝑘

hidden goods (HEF-𝑘) assumes agents have common information about an allocation except for a
small subset of 𝑘 goods which are hidden [Hosseini et al., 2020]. HEF-𝑘 strikes a balance between
the counterfactual removal of goods, as in EF1, and epistemic envy-freeness, which assumes agents
have different information about how goods are distributed [Aziz et al., 2018].

We seek to investigate the perceived fairness of these relaxations of EF through an experiment
with human subjects. We concentrate on perceptions of envy, the specific aspect of fairness that

1See e.g., [Harsanyi, 1990, Sen, 2018] for a comprehensive discussion on interpersonal utility comparisons.
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underlies envy-based fairness notions, and estimate how likely it is for human subjects to experience
envy given allocations that satisfy different relaxations of EF. At a high level, our work is aligned
with a large body of work in distributive justice concerning socially fair outcomes (in contrast to
procedural justice, which concerns fair processes for determining outcomes). 2

1.1 Our Contributions
We develop a novel framework, data set, and measure of perceived fairness of allocations of indivisible
goods through an empirical study. In our empirical study, each participant is presented with a series
of scenarios in which they take on the perspective of an agent in a fair division instance with an
initial allocation that satisfies one of three fairness criteria: sEF1, EF1, or HEF-𝑘 (defined in Section
2). Participants may either keep their given bundle or swap it with the bundle of an agent of their
choice. Our approach measures perceptions of fairness by evaluating whether an agent is envious
of another’s bundle. If an agent is envious, then it is likely the agent would be willing to swap her
bundle should she get the opportunity to do so. This indicates the individual’s perceived envy (but
not the degree of envy). Participants’ responses are aggregated into a single swap rate, the percentage
of scenarios where a swap was chosen, measuring aggregate perceived fairness under each treatment.

Our results show that HEF-𝑘 allocations are perceived to be fairer than in the sEF1 and EF1
treatments. In particular, we show that there is a statistically significant difference between swap rates
of HEF-𝑘 and both sEF1 and EF1 treatments (𝑝 < 0.001). Participants under the HEF-𝑘 treatment
displayed the lowest swap rate, followed by sEF1 and then EF1 (Section 4.1). We subsequently
control for the effect of variables such as instance size, allocation balance (defined in Section 3.1),
and scenarios for which it is optimal to swap, and find that the qualitative results still hold.

Additionally, we study cognitive effort, as measured by response time and self-reports of scenario
difficulty, to understand how treatment affects participants’ reasoning and how it correlates with
perceived fairness. We find that there is a significant difference in the cognitive effort exercised by
participants, measured by response time and self-reports of difficulty, between the HEF-𝑘 and both
sEF1 and EF1 treatments (𝑝 < 0.001) (Section 4.2). Hence, perceived fairness appears correlated with
the cost of increased task complexity.

1.2 Related Work
Our work is in line with the broader research agenda on empirically testing the relevance of different
fairness notions and theories of distributional preferences. While it is evident people trade off self-
interest for fairness [Kahneman et al., 1986], it is still not clear to what extent and which theories of
fairness are the most valid. Prior experiments have employed several methods to evaluate perceived
fairness of allocations, often asking participants which they prefer. For instance, Herreiner and Puppe
[2009] empirically investigated EF in a free-form bargaining experiment. In their setting, participants
had subjective preferences over goods and collaborated with another to choose the allocation (see
also [Herreiner and Puppe, 2010]). The authors subsequently analyzed the fairness criterion satisfied
by and efficiency of the chosen allocations. This work is most similar to ours, except that we measure
the envy experienced by participants and focus on the relative fairness of relaxations of EF.

Herreiner and Puppe [2009]’s work follows a tradition of questionnaire methodology for evaluating
distributive justice, popularized by Yaari and Bar-Hillel [1984] and Konow [2003], who asked whether
participants perceive given allocations as just or not (see also [Gaertner, 2009, Chapter 9]). Similarly,
Herreiner and Puppe [2007] asked participants to choose which of a set of allocations was the most
fair. While these studies provide some evidence in favor of certain fairness notions, payoffs were

2We refer the reader to the extensive literature in social justice theory, e.g., [Adams, 1963, Rawls, 2004]. See [Lee et al., 2019,
Rawls, 2004, Tyler and Allan Lind, 2002] on procedural justice.



Hadi Hosseini, Joshua Kavner, Sujoy Sikdar, Rohit Vaish, and Lirong Xia 3

identical, so intrapersonal theories like EF could not be tested. In this vein, Engelmann and Strobel
[2004] ran an experiment were participants would, with some probability, received the allocation of
money they chose. Their aim was to compare the explanatory power of distributional preferences
models by Fehr and Schmidt [1999], Bolton and Ockenfels [2000], and Charness and Rabin [2002]. 3

A separate line of work by Lee and colleagues focused on perceived fairness of algorithmic
decision-making. Participants in Lee and Baykal [2017]’s study perceived allocations prescribed
by Spliddit4 to be less fair than those chosen in group discussions one third of the time. The
authors explain this distinction as the algorithms excluding the effects of individual participation,
interpersonal power, and altruism on fairness. Lee [2018] suggested that perceived fairness depends
on task characteristic. Their participants recognized that algorithms produce less fair decisions
on tasks requiring human skills, such as those requiring subjective judgement, but equally fair on
mechanical tasks, such as processing data. Lee et al. [2019] measured the effect of transparency and
outcome control (i.e., the ability to manually adjust prescribed outcomes) on perceived fairness of EF1
allocations prescribed by Spliddit. They showed that perceived fairness increased after participants
were given an opportunity to modify the allocation, either individually or through group discussions.
These studies substantially differ from ours in that (1) there is an impact of ‘personal image’ and
‘social pressure’ in bargaining and collective decision-making, which may provide a justification for
inequality aversion, and (2) there is a sense of ‘agency’ within discussions or ability to modify the
outcome, which may result in higher satisfaction via the IKEA Effect.5

Other empirical research includes Kyropoulou et al. [2022], who tested the effect of participants’
strategic behavior in choosing allocations of divisible resources on total envy. Separately, König et al.
[2019] measured the suitability of two well-adopted matching mechanisms, the Boston mechanism
and assortative matching, under the veil of ignorance [Rawls, 2004] assumption. They concluded
that which procedure participants prefer depends on how much autonomy they have to report their
preferences. The empirical validity of fairness axioms in cooperative games [De Clippel and Rozen,
2022, d’Eon and Larson, 2020] and machine learning [Chakraborti et al., 2020] has also been studied.

2 MODEL AND SOLUTION CONCEPTS
Model. For any 𝑘 ∈ N, we define (︀𝑘⌋︀ ∶= {1, . . . , 𝑘}. An instance of the fair division problem is

a tuple ℐ = ∐︀𝑁,𝑀,𝑉 ̃︀, where 𝑁 B (︀𝑛⌋︀ is a set of 𝑛 agents, 𝑀 B (︀𝑚⌋︀ is a set of 𝑚 goods, and
𝑉 B {𝑣1, . . . , 𝑣𝑛} is a valuation profile that specifies for each agent 𝑖 ∈ 𝑁 her preferences over the
set of all possible bundles 2𝑀 . This valuation function 𝑣𝑖 ∶ 2𝑀 → N ∪ {0} maps each bundle to a
non-negative integer. We write 𝑣𝑖, 𝑗 instead of 𝑣𝑖({ 𝑗}) for a single good 𝑗 ∈ 𝑀 . We assume that the
valuation functions are additive so that for any 𝑖 ∈ 𝑁 and 𝑆 ⊆𝑀 , 𝑣𝑖(𝑆) B ∑𝑗∈𝑆 𝑣𝑖, 𝑗 , where 𝑣𝑖(∅) = 0.

Allocation. An allocation 𝐴 B (𝐴1, . . . ,𝐴𝑛) is a (complete) 𝑛-partition of the set of goods 𝑀 ,
where 𝐴𝑖 ⊆𝑀 is the bundle allocated to agent 𝑖 ∈ 𝑁 .
Definition 1 (Envy-freeness). An allocation 𝐴 is: (i) envy-free (EF) if for every pair of agents
ℎ, 𝑖 ∈ 𝑁 , 𝑣𝑖(𝐴𝑖) ≥ 𝑣𝑖(𝐴ℎ) [Foley, 1967], (ii) strongly envy-free up to one good (sEF1) if for
each agent ℎ ∈ 𝑁 such that 𝐴ℎ ≠ ∅, there exists a good 𝑔ℎ ∈ 𝐴ℎ such that for every 𝑖 ∈ 𝑁 ,
𝑣𝑖(𝐴𝑖) ≥ 𝑣𝑖(𝐴ℎ/{𝑔ℎ}) [Conitzer et al., 2019], and (iii) envy-free up to one good (EF1) if for each pair
of agents ℎ, 𝑖 ∈ 𝑁 , there exists a good 𝑔ℎ ∈ 𝐴ℎ such that 𝑣𝑖(𝐴𝑖) ≥ 𝑣𝑖(𝐴ℎ/{𝑔ℎ}) [Budish, 2011, Lipton
et al., 2004].

3See also the subsequent experiments by [Bereby-Meyer and Niederle, 2005, Kritikos and Bolle, 2001] and the back-and-forth
discussion of [Bolton and Ockenfels, 2006, Engelmann and Strobel, 2006, Fehr et al., 2006].
4www.spliddit.org
5The IKEA effect is a cognitive bias in which people tend to value on products they helped to create highly [Norton et al.,
2012].
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𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6

𝑣1 2∗ 2∗ 4 1 1 4

𝑣2 1 4 1∗ 1∗ 4 1

𝑣3 4 1 3 3 2∗ 2∗

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6

𝑣1 2∗ 2 4 1 1∗ 4

𝑣2 1 4 1∗ 1∗ 4 1
𝑣3 4 1∗ 3 3 2 2∗

(a) sEF1 (b) EF1
𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6

𝑣1 2 2 4 1∗ 1 4∗
𝑣2 1 4∗ 1 1 4∗ 1
𝑣3 4∗ 1 3∗ 3 2 2

(c) HEF-𝑘

Fig. 1. Allocations satisfying (a) sEF1, (b) EF1 and (c) HEF-𝑘 for a fair division problem instance.
Elements marked by a circle, rectangle, and diamond must be hidden or counterfactually removed to
eliminate the envy from agents 1, 2, and 3 respectively.

Definition 2 (Envy-freeness with hidden goods). An allocation 𝐴 is envy-free up to 𝑘 hidden goods
(HEF-𝑘) if ∃𝑆 ⊆ 𝑀 , ⋃︀𝑆 ⋃︀ ≤ 𝑘, such that for every pair of agents ℎ, 𝑖 ∈ 𝑁 , we have that 𝑣𝑖(𝐴𝑖) ≥
𝑣𝑖(𝐴ℎ/𝑆) [Hosseini et al., 2020].

By the above definitions, EF implies sEF1, which implies EF1 and subsequently HEF-𝑘 for some
𝑘 ≤ 𝑚. Moreover, an allocation is EF if and only if it is HEF-0 and ∀𝑘 ≥ 0 HEF-𝑘 implies HEF-
(𝑘 + 1) [Hosseini et al., 2020]. We distinguish these classes throughout this paper with the following
qualifications. First, we recognize two variants of envy-freeness up to one good by discerning
allocations that are EF1 but not sEF1. Through an abuse of notation, we henceforth label this weak
variant “EF1.” Both variants (weak and strong) correspond to the counterfactual removal of goods
when agents have full information about the entire allocation. Second, for any HEF-𝑘 allocation
with hidden set 𝑆 , each agent 𝑖 knows their own bundle 𝐴𝑖 but only has partial information about
the goods in the bundle of any other agent ℎ. Then, 𝑖 has no envy among the observable (partial)
allocation (i.e., 𝑣𝑖(𝐴𝑖) ≥ 𝑣𝑖(𝐴ℎ/𝑆)). Furthermore, we assert that ⋃︀𝑆 ⋃︀ = 𝑘 and that 𝐴 is not HEF-𝑘 ′ with
respect to any strict subset 𝑆 ′ ⊂ 𝑆 , where ⋃︀𝑆 ′⋃︀ = 𝑘 ′ < 𝑘 .
Example 1. Figure 1 demonstrates three allocations for the same instance with three agents 1, 2, 3
and six goods 𝑔1, . . . , 𝑔6. They are demonstrated by the shaded elements in subfigures (a), (b), and
(c), satisfying sEF1, EF1, and HEF-1 respectively. Elements outlined by a circle, rectangle, and
diamond must be counterfactually removed (in the sEF1 and EF1 allocations) or hidden (in the HEF-1
allocation) to eliminate the envy of agents 1, 2, and 3 respectively.

Consider the EF1 allocation 𝐴 where 𝐴1 = {𝑔1, 𝑔5}, 𝐴2 = {𝑔3, 𝑔4}, and 𝐴3 = {𝑔2, 𝑔6}. Although
agent 1 is envious of agents 2 and 3, we have 𝑣1(𝐴1) ≥ 𝑣1(𝐴2/{𝑔3}) and 𝑣1(𝐴1) ≥ 𝑣1(𝐴3/{𝑔6}). For
the HEF-1 allocation, rather, agent 1 is not envious of agent 3 because they only observe a partial
allocation: 𝑣1(𝐴1) ≥ 𝑣1(𝐴3/𝑆) where 𝑆 = {𝑔3}. Agent 3 is not envious of agent 1 because they observe
the entire allocation and 𝑣3(𝐴3) ≥ 𝑣3(𝐴1).

Notice that at most a single good is outlined in each agent’s bundle in the sEF1 allocation, whereas
multiple goods may be outlined in each bundle in the EF1 allocation.

3 EXPERIMENTAL DESIGN
We conducted an empirical study to compare the perceived fairness of multiple relaxations of envy-
freeness—sEF1, EF1, and HEF-𝑘—using a gamified pirate scenario (see Figure 2). Participants
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(a) (b)

Fig. 2. Sample scenarios from the (a) EF1 and sEF1 treatments and (b) HEF-𝑘 treatment. In the EF1
and sEF1 treatments, participants have a ‘birds-eye view’ of all goods in all bundles. In the HEF-𝑘
treatment, participants observe only the revealed goods from other pirates’ ‘upright’ boxes. All HEF-𝑘
treatment participants complete a training tutorial emphasizing this point.

were split into three treatments and given twelve scenarios. In each scenario, the participant was
assigned the role of one member of a crew of pirates (agents) whose captain (a central authority)
wished to divide goods, the spoils of a recent adventure, among the crew. Each scenario consisted
of a number of goods, presented in a marketplace, and the bundles of (revealed) goods for each
pirate in an allocation determined by the captain. Participants’ subjective values for each bundle were
determined by the given instance and the perspective of the participant. For instance, a participant
could be offered the instance and allocation demonstrated by Figure 1(a) from the perspective of
agent 1 and would value their bundle at 𝑣1(𝐴1) = 1 + 1 = 2. Alternatively, their value for 𝐴1 from the
perspective of agent 3 would be 𝑣3(𝐴1) = 4 + 1 = 5.

Given this information, participants were asked whether they wanted to swap their bundle with
that of another pirate of their choice, in its entirety, or keep their initial bundle. Participants had a
stake in the outcome of their choices: they received a bonus payment if the total value of goods they
collected surpassed a threshold. We measured participants’ swap rate, the percentage of scenarios
where a swap was chosen, and compared treatments using the Chi-square (𝜒2) [McHugh, 2013] and
Fisher’s exact tests [Kim, 2017]. We then compared treatments upon segmenting our data by (i) the
number of agents and goods (instance size), (ii) the distribution of goods across agents (allocation
balance), and (iii) whether it is optimal for participants to swap or not, including the value of hidden
goods (optimal choice).

Treatment details. Each participant was subjected to exactly one of three treatments – sEF1, EF1,
and HEF-𝑘 – such that each allocation presented to the participant satisfied the same relaxation of
EF. Across treatments, participants were shown their subjective values of the visible portions of
the bundles of each agent. Participants in the sEF1 and EF1 treatments had full information about
the allocations (see Figure 2(a)). Participants assigned the HEF-𝑘 treatment were shown their own
bundles but only the visible portions of other agents’ bundles (recall Definition 2; see Figure 2(b)).
We explained through a tutorial that the visible allocation was incomplete by detailing the possibilities
of the missing information: some goods may be allocated to and hidden by other pirates or discarded
altogether. Participants could therefore enumerate the possible values of the other agents’ bundles.
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Our study employed 120 mutually exclusive participants for each of three Human Intelligence
Tasks (HITs), corresponding to the three treatments, in Amazon’s Mechanical Turk platform, totalling
360 participants. Our study was single-blind; participants were not aware of their treatment.

Perceived fairness. We measured perceptions of one aspect of fairness, envy, via swaps. Specif-
ically, given an allocation 𝐴, we say that agent 𝑖 swaps her bundle 𝐴𝑖 with agent ℎ if the agents
exchange all goods within their bundles (including hidden goods). An agent choosing to swap bundles
indicates that they are envious of another agent and thus does not perceive their bundle 𝐴𝑖 as fair.
We call the proportion of participants that swap under 𝐴 its empirical swap rate, representing the
aggregate perceived fairness of the scenario.

3.1 Data Set
The scenarios were sampled from a novel data set of 166 scenarios, each consisting of a fair division
instance, an allocation partitioning the goods, and an assignment of the participant to one of the
agent’s perspectives.

Instances. We generated twenty-eight instances involving nine or ten goods: twenty-one small
instances with three agents and seven large instances with five agents. Each valuation 𝑣𝑖, 𝑗 for
𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 was sampled uniformly at random from {5, 10, . . . , 120} for small instances and
{0, 10, . . . , 150} for large instances.

Allocations. For each instance, we computed three allocations satisfying sEF1, EF1, and HEF-𝑘
for a pre-specified 𝑘 ∈ {0, 1, 2} for the three corresponding treatments. Allocations were computed by
randomly shuffling goods across agents until the desired properties were achieved. As we observe in
Example 1, EF1 allocations can sometimes require the counterfactual removal of a larger number
of goods than sEF1 allocations. To reflect this, and emphasize the distinction between EF1 and
sEF1 allocations in our experiments, we pick EF1 allocations that require at least 𝑛 + 2 goods to be
counterfactually removed to eliminate envy among agents.

There were two levels of balance for allocations. A balanced allocation gives every agent a
bundle of equal size, three (respectively, two) goods to each agent in a small (respectively, large)
instance. In an unbalanced allocation, agents may have bundles consisting of different number
of goods, with bundle sizes (2, 4, 4) for small instances and either (4, 2, 2, 1, 1) or (3, 2, 2, 2, 1) for
large instances.

Scenario properties. Our 166 scenarios were made with the following combinations: 63 allocations
were affiliated with small instances, of which 45 were balanced and 18 were unbalanced,
while 20 allocations were affiliated with large instances, of which 14 were balanced and 6
were unbalanced. Table 2 in Appendix A presents the number of allocations in each treatment
succinctly. Each of the these 83 allocations provided two scenarios to the data set, corresponding to
two perspectives we offered participants, yielding the 166 total scenarios.

3.2 Survey Outline
Participants undertook the following workflow (see Figure 6 in Appendix A). First, participants gave
their consent to partake in our IRB-approved study after being informed of the study description,
benefits, risks, rights, and project manager contact information. After being assigned a treatment
and a randomly determined perspective, they subsequently answered twelve scenario questions, two
questions soliciting scenario difficulty, and two attentiveness check questions. The scenarios were
organized into four sections, each consisting of scenarios of different instance size and allocation
balance that were selected uniformly at random from the appropriate data set, and then randomly
permuted within the section. A complete survey therefore consisted of:
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Variable value Pairs of Treatments
HEF-𝑘 , sEF1 HEF-𝑘 , EF1 sEF1, EF1 HEF-0, sEF1 HEF-1, sEF1 HEF-2, sEF1

All scenarios 0.286 0.173 0.604 0.150 0.306 0.371
Optimal
Choice

stay-is-opt 4.533 0.512 (ns) 0.113 (†, #) 4.415 5.384 2.753 (ns)
swap-is-opt 0.346 0.353 1.021 (#) N/A 0.334 0.357

Repeated scenario (S7) 0.286 0.211 0.737 0.091 0.490 (#) 0.338

Table 1. Ratio of swap rates for pairs of treatments and adjusting for different variables. The 𝜒2 test is
used for all comparisons except where denoted by a “†”, in which the Fisher’s exact test is used. All
tests are statistically significant with 𝑝 < 0.001, except where denoted by “#,” which is significant with
𝑝 < 0.05, and “ns,” which is not statistically significant.

● Section 1 (S1–3): 3 small-balanced scenarios. If the treatment is HEF-𝑘, then 𝑘 ∈ {0, 1, 2}
respectively.
● Section 2 (S4–7): 3 small-unbalanced scenarios followed by S7 which is a repeat of S4. If

the treatment is HEF-𝑘 , then 𝑘 ∈ {0, 1, 2} respectively for (S4–S6).
● Difficulty: self-reported rating for small scenarios.
● Section 3 (S8–10): 3 large-balanced scenarios. If the treatment is HEF-𝑘, then 𝑘 ∈ {0, 1, 2}

respectively.
● Section 4 (S11-12): 2 large-unbalanced scenarios. If the treatment is HEF-𝑘 , then 𝑘 = 1.
● Difficulty: self-reported rating for large scenarios.

Tutorials. All participants were required to correctly answer a few tutorial questions prior to the
scenarios.

The first tutorial taught participants that the value of a bundle was equal to the sum of values of
the goods inside that bundle. Participants were presented with a bundle consisting of three goods,
which were highlighted in the marketplace, and were asked to compute the bundle’s value.

The second tutorial taught participants that whether they received a monetary bonus upon complet-
ing the survey is dependent on the total value they collect throughout its course. The participants
were presented with three bundles, similar to Figure 2(a), and were asked if they wanted to keep their
bundle (left) or swap it with either Pirate 1’s bundle (middle) or Pirate 2’s bundle (right). The bundle
with the highest value was enforced as the correct choice.

HEF-𝑘 treatment participants were provided a third tutorial designed to teach them about goods
in the marketplace that were not visibly allocated. Participants were presented with three bundles,
similar to Figure 2(b), and were told that the missing goods may be either allocated to and hidden
by the other pirates or discarded altogether. Participants were asked about the maximum number of
goods that could be found in any one pirate’s bundle, thus requiring them to reason about the location
of missing goods.

Self-reported difficulty. The groups of seven small and five large scenarios were each suc-
ceeded by a question asking participants to rate the difficulty of the scenarios on a 5-point Likert
scale from Very Easy (1) to Very Hard (5).

Attentiveness check questions. We incorporated many checks to ensure high quality responses
from attentive human participants and dissuade fraud, which is a known problem for Mechanical
Turk [Kennedy et al., 2020]. Additional details about participant qualifications can be found in
Appendix A.
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4 EXPERIMENTAL RESULTS
We test the empirical swap rate of each treatment as a measure for perceived fairness across all
scenarios and while controlling for several variables. We further partition the HEF-𝑘 treatment into
three separate sub-treatments—HEF-0, HEF-1, and HEF-2—and compare their swap rates with sEF1,
with a focus on whether increasing the number of hidden goods affects perceived fairness. Separately,
we compare the effect of treatment and size of instance on participants’ cognitive effort, as measured
by response time and self-reports of difficulty, for answering the scenarios.

Of particular interest is whether swap rates differ between treatments when a participant’s optimal
(i.e., value-maximizing) choice is to either stay or swap bundles, due to the following two observations.
First, participants may be biased to accept their default bundle and maintain the status quo rather
than make adjustments [Samuelson and Zeckhauser, 1988]. Second, HEF-𝑘 differs from the other
treatments in that participants may not have enough information to distinguish which bundle is
optimal. This raises the question of whether swap rates differ depending on optimal choice.

4.1 Perceived Fairness
We formalize our research questions as follows:

Research Questions: For any two treatments 𝑋,𝑌 ∈ {sEF1,EF1, HEF-𝑘} or
{sEF1,HEF-0,HEF-1,HEF-2}, do swap rates differ between 𝑋 and 𝑌 overall and when adjusted inde-
pendently for the variables: (i) instance size: small or large, (ii) allocation balance: balanced
or unbalanced, and (iii) optimal choice: whether the value-maximizing choice is to keep the
initial bundle (stay-is-opt) or to swap (swap-is-opt)?

Null Hypothesis: Swap rate is independent of treatment.
Alternate Hypothesis: Swap rate depends on treatment.
Our experiments provide statistically significant evidence for rejecting the null hypothesis that

swap rate is independent of treatment. We draw this conclusion using the Chi-square (𝜒2) test with
𝑝 < 0.001 for nearly all combinations of pairs of treatments and values for the different confounding
variables in our study and 𝑝 < 0.05 for the remaining combinations.

Table 1 summarizes our findings. For each pair of treatments 𝑋 and 𝑌 , identified by the column
named ‘𝑋,𝑌 ’, and for certain confounding variables, we present the ratio of swap rates between 𝑋 to
𝑌 . For example, the ratio of swap rates from all HEF-𝑘 scenarios to all sEF1 scenarios is 0.286. In
Appendix B we present Tables 4 and 9 which include more specific information about the 𝑝-values
of the 𝜒2 and Fisher’s exact test statistics and effect size, as measured by Cramer’s V [Kim, 2017],
about the tests. We include further tests conditioning on instance size and allocation balance.

Our main finding is that across all scenarios, (1) the perceived envy of HEF-𝑘 is significantly
lower than that of either sEF1 and EF1, and (2) sEF1 allocations are less likely to be perceived as
unfair than EF1 allocations, as we show in Figure 3. This holds true upon adjusting for instance
size (small or large) and the allocation balance (balanced or unbalanced), and among
scenarios where swap-is-opt. Thus, our main takeaway message is:

Allocations that are visibly envy-free through hiding goods are perceived to be fairer than
allocations that are counterfactually envy-free via removing goods.

Segmented Data. Upon realizing this conclusion, we segment our data to draw additional insights.
In particular, among HEF-𝑘 allocations, swap rate increases as the number of hidden goods increases
(Table 6 in Appendix B): HEF-0 allocations induce less envy among the participants than either
HEF-1 or HEF-2. This is perhaps because as more goods are hidden, participants are more cautious,
more uncertain about the allocation’s fairness, and spend more time on average to choose bundles
(see Figure 8 in Appendix B). Further studies may be necessary to explain these results.
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Fig. 3. Swap rates per treatment, all scenarios. Here, 𝑛 is the number of scenarios per treatment.

Additionally, to control for any preferential bias toward our choices of pirate-related goods, we
repeated a scenario and replaced the goods with identically-shaped gems of different colors (see
“Repeated scenario (S7)” in Table 1). This test is described further in Appendix B.

Optimal Choice. We find that participants’ perceived fairness is indeed affected by their optimal
choice. Specifically, for each treatment (except HEF-0), participants’ swap rates are statistically
different between swap-is-opt and stay-is-opt scenarios (Table 5 in Appendix B).

Among stay-is-opt scenarios (see Figure 4), where participants’ bundles have the highest
value, we observe that sEF1 allocations are perceived with significantly lower envy than HEF-𝑘
allocations, and in turn EF1 allocations. Participants subjected to the sEF1 treatment could verify
with certainty that their bundles have the highest value since all goods were visible. It may not be
possible to make such determinations under the HEF-1 and HEF-2 treatments, where goods may
be hidden to eliminate envy between other pairs of pirates. Indeed, the hidden goods may all be
allocated to another pirate, hypothetically raising the value of that pirate’s bundle to be the highest,
justifying a swap. Surprisingly, HEF-0 and EF1 induce higher envy than sEF1 allocations, despite it
being equally possible to verify that the participant’s bundle has the highest value. This may be due
to framing effect biases by which participants may not have incorrectly assumed that goods were
missing [Tversky and Kahneman, 1985]. However, further tests are needed to confirm this conjecture.
Swap rates between either HEF-𝑘 and EF1, and HEF-2 and sEF1, are not statistically significant in
this case.

When swap-is-opt (Figure 7 in Appendix B), participants swap their bundles significantly less
under the HEF-𝑘 treatment than the sEF1 and EF1 treatments. This supports our overall conclusion
that participants desire allocations that are not visibly unfair. Since all goods are visible under
the sEF1 and EF1 treatments, the participant has clear evidence that her allocated bundle has a
lower value than that of another pirate. Under the HEF-𝑘 treatment, rather, where the allocation of
some goods is hidden, participants perceive significantly lower envy even when they are allocated
a lower-valued bundle. Recall that HEF-0 is equivalent to EF, so there are no such scenarios when
swap-is-opt.

4.2 Cognitive Effort
In addition to our tests of perceived fairness, we investigate the extent to which cognitive effort varies
by treatment. Specifically, we measure:
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Fig. 4. Swap rates per treatment, stay-is-opt. Here, 𝑛 is the number of questions per treatment.

Fig. 5. Box-plots of (left) time spent per scenario and (right) reported difficulty (higher scores indicate
higher difficulty) by treatment. Outliers excluded.

● response time, the time elapsed between each scenario page being made available to the participant
and the participant submitting her choice, and
● scenario difficulty, using the self-reports of scenario difficulty solicited immediately after the
small and then the large scenarios.

We check whether the mean response time or reported difficulty on a five-point Likert scale is
different between pairs of treatments, while adjusting for different variables such as (i) optimal
choice – whether the value-maximizing choice is to stay with the allocated bundle (stay-is-opt)
– and (ii) instance size – small or large.

Our experiments provide sufficient evidence to reject the null hypothesis that cognitive effort for
HEF-𝑘 is the same as either sEF1 or sEF1, using a two-sided Welch t-test (𝑝 < 0.001). Tables 7 and
8 in Appendix B summarize our findings for response times per scenario and reported feedback,
respectively. Figure 5 (left) illustrates that the average sEF1 response time is lowest and HEF-𝑘
is highest, while EF1 splits the two. Similarly, in Figure 5 (right), participants report that sEF1
scenarios are easiest while HEF-𝑘 is the most difficult and EF1 lies in between. These observations
hold for either instance size and demonstrate that HEF-𝑘 instances cause higher cognitive burden
on participants. Effect size for these statistical tests, as measured by Cohen’s D [Cohen, 1992], is
reported in Tables 12 and 13 in Appendix B.

4.3 Descriptive Comments from Participants
We identify the participants anonymously using a letter 𝑆 , 𝐸, or 𝐻 corresponding to their treatment
(sEF1, EF1, or HEF-𝑘).



Hadi Hosseini, Joshua Kavner, Sujoy Sikdar, Rohit Vaish, and Lirong Xia 11

Participants in the EF1 treatment consistently noted that other pirates’ bundles “were usually
more valuable” (𝐸22), so they should “swap with the highest yielding chest” (𝐸17, 𝐸8, 𝐸15). On the
other hand, HEF-𝑘 participants noted “it seemed a no brainer to just never swap” (𝐻8, 𝐻28), either
because it was the “safest bet” (𝐻49) or the “greatest statistical chance of getting higher reward”
(𝐻59). These comments are consistent with our data that swap rates were significantly lower for
HEF-𝑘 than the other treatments.

A few participants explicitly addressed concerns about fairness. Participant 𝑆57 suggested “it
didn’t seem like a fair split” while 𝑆63 declared they wouldn’t swap in real life “because it would be
unfair to the other person.” Despite this hesitation, participant 𝐸96 reasoned that because “there was
no defining reason why anyone would get more than others” due to differing effort, they should still
select the most valuable treasure. These comments resemble Herreiner and Puppe [2009]’s findings
that participants care more about inequality aversion than EF to ensure fairness. Still, it is unclear
to what extent participants’ opinions and choices are affected by strategic interaction with other
humans, as in [Herreiner and Puppe, 2009], as opposed to confederates, as in our work. We leave this
intriguing question for future work.

5 LIMITATIONS AND FUTURE WORK
Our experiment was limited, in part, by the scenario size, uncontrolled bias, and the type of fairness
notions we tested. First, our experiment tested scenarios for a cross-section of the numbers of goods
𝑚, agents 𝑛, and goods hidden 𝑘. We sought to provide meaningful information to participants
without causing cognitive overload. Future work may determine how sensitive our results are to
scaling these values.

Second, we controlled for effects of our pirate-related goods on participants’ decision-making
by randomly permuting good images and repeating a scenario with identical multi-colored gems.
However, we may not have accounted for all confounding variables, such as framing effects. For
example, while participants’ values were subjective, they could have reasoned that values were
objective based on the scenario presentations. Furthermore, our setup of the HEF-𝑘 treatment
conveyed to participants the possibility that hidden goods may not be allocated at all. This subsumes
the reality that all goods were indeed allocated, yet is par to the definition of HEF-𝑘 [Hosseini et al.,
2020]. Still, this is not be the only way to implement an information scheme, as exemplified by
Herreiner and Puppe [2009], who explicated all subjective values for all agents. Further work may
be necessary to determine the sensitivity of our results to framing effects and what information is
provided.

Finally, our experiments compared the relative perceived fairness of two intrapersonal envy-based
concepts. Both EF1 and HEF-𝑘 presume that people find allocations fair if they are not envious
of others’ bundles; we measured perceived envy via swap rate according to this standard. Our
results confirm that people experience less envy among allocations for which they theoretically and
epistemically should not experience envy (HEF-𝑘) than those requiring counterfactual reasoning
(EF1). Whether envy-based notions of fairness are more appropriate than comparative forms like
inequality aversion is a topic of ongoing debate [Herreiner and Puppe, 2009].

Our work presents an important first step to provide an empirical comparison about perceived
fairness of relaxations of EF. Future empirical research may investigate perceived fairness of other
notions, such as maximin-share [Budish, 2011] and proportionality, attitudes towards procedural
versus distributive fairness, and whether moral judgements are affected by participants either having
a stake in the resource division task or making decisions as outside observers.
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APPENDIX
A EXPERIMENTAL DESIGN: ADDITIONAL DETAILS
The workflow for a participant in our study is illustrated in Figure 6. Here, we provide details on
the measures used in our study to ensure high quality responses from participants recruited from the
Amazon Mechanical Turk platform. In addition to screening participants and qualifying responses, we
discuss how participants were incentivized to provide high quality responses through our payments
structure.

Fig. 6. The workflow of a participant.

Scenario properties. The number of allocations that satisfied each treatment is presented in Table 2.

Perspective. Participants were randomly assigned to assume the role of either the first or last (i.e.,
third or fifth) agent in the instance. Providing two perspectives expanded our data set and enabled
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Instance
Size

Allocation
Balance

Treatment
sEF1 EF1 HEF-0 HEF-1 HEF-2

small
balanced
(3, 3, 3) 15 15 5 5 5

unbalanced
(2, 2, 4) 6 6 2 2 2

large

balanced
(2, 2, 2, 2, 2) 5 5 1 2 1

unbalanced
(4, 2, 2, 1, 1) 1 1 0 0 0

unbalanced
(3, 2, 2, 2, 1) 1 1 0 2 0

Table 2. Number of scenarios per treatment and perspective, given instance size and allocation
balance (number of goods per each agent in parentheses).

participants to have different goods in their bundles for the same instances. This did not bias our
results as valuations were randomly generated and allocations did not depend on agents’ identities.

Incentives. In order to realize the assigned in-game valuations as real-world value, participants
were incentivized to accumulate high-value bundles throughout the survey. Specifically, each partici-
pant was eligible to receive two payments: (1) a base payment of $0.50 for completing the survey
in its entirety, and (2) a bonus payment of $0.50 for accumulating at least $2000 worth of goods
through all scenarios as measured by participants’ assigned subjective valuations. Hence, we are able
to emulate a real-world setting through our experiment with fictional pirate-related goods.

Note that within the HEF-𝑘 treatment, participants accumulate the values of any hidden goods
of their chosen bundle as well. The bonus threshold was also chosen to encourage participants to
pay greater attention to the study and not choose randomly for each scenario. We determined the
threshold by computing the minimum and maximum total value any participant could obtain on any
survey using our data set. We then chose $2000 which falls between between 71% and 84% for these
ranges.

Response qualifications. In order to obtain high quality responses, participation in our study was
restricted to Mechanical Turk workers who (a) had at least an 80% approval rate on previous tasks,
(b) had completed at least 100 tasks, (c) were located in either the United States or Canada6, (d) had
a Master’s qualification7 on the Mechanical Turk platform, and (e) had not attempted or taken
the survey before. Through the experiment we adjusted the minimum HIT approval rate (%) and
minimum number of HITs approved that were necessary in order to attract Mechanical Turk Workers
to participate; see Table 3.

Attentiveness check questions. We incorporated many checks to ensure high quality responses
from attentive human participants and dissuade fraud, which is a known problem for unprotected
Mechanical Turk studies [Kennedy et al., 2020]. Prior to the tutorial, participants answered a simple
arithmetic problem to ensure they were not bots. On the final page, they answered (1) their favorite
good and (2) final comments or questions. We presumed that we could identify inattentive participants
giving poor quality data, as they would not be able to answer these prompts appropriately. We did

6We restricted location to ensure language proficiency and prevent any potential issues due to linguistic barriers.
7Workers with Master’s qualification, determined by Mechanical Turk, are those who “have consistently demonstrated a high
degree of success in performing a wide range of HITs across a large number of Requesters.” See https://www.mturk.com/
worker/help.

https://www.mturk.com/worker/help
https://www.mturk.com/worker/help
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Treatment
Minimum

Approval Rate
Minimum

Number Approved
Count

sEF1 95% 1000 120

EF1 95% 1000 20
80% 100 120

HEF-𝑘

95% 1000 20
90% 1000 62
80% 1000 76
90% 500 83
90% 100 92
80% 100 120

Table 3. Number of participants satisfying each qualification range, per treatment, as measured by
minimum approval rate and minimum approval range (not mutually exclusive).

not find any participants’ responses to be of poor quality by these measures, so we did not discard
any responses.

B EXPERIMENTAL RESULTS: ADDITIONAL TABLES AND FIGURES
Controlling for the choice of goods. Our scenarios presented goods related to a pirate’s adventure,

such as a map, rum, and a diamond. This gamified scenario stands in for a wider variety of fair division
problems, such as inheritance division [Brams and Taylor, 1996], allocating medical resources [Pathak
et al., 2021], and course allocation [Budish et al., 2017]. To control for any preferential bias toward
these goods, we repeated a scenario and replaced the goods with identically-shaped gems of different
colors. The repeated scenario (S7) was identical to the original (S4), which is small-unbalanced
but with varying numbers of hidden goods 𝑘 for the HEF-𝑘 treatment. Additionally, the pictures
representing the goods were randomly permuted for every scenario.

We find that every null hypothesis that was rejected by comparing responses on all scenarios is
also rejected when the test is performed only on the repeated scenario (see row labeled “Repeated
scenario (S7)” in Table 1). Furthermore, the ratio of swap rates for each pair of treatments remains
similar as well. Therefore, our results do not appear to be impacted by the choice of goods.

Perceived envy under different treatments. Table 4 presents the ratio of swap rates and p-values for
all questions under different pairs of treatments.

Perceived envy of swap-is-opt versus stay-is-opt scenarios under different treatments.
Table 5 depicts the ratio of swap rates for swap-is-opt versus stay-is-opt scenarios under
different treatments. Notably, there is a statistically significant difference between swap-is-opt
and stay-is-opt for all treatments (except for HEF-0, for which there are no swap-is-opt
scenarios).

Perceived envy comparing HEF-𝑘 treatments. Table 6 depicts the results of our primary hypothesis
test comparing the independence of swap rates and treatments, for the pairwise treatments of HEF-0,
HEF-1, and HEF-2, and adjusting for different variables. These results complement Table 1 and
demonstrate 𝜒2 statistics and associated 𝑝-values. Notably, there is a statistically significant difference
between HEF-0 and both HEF-1 and HEF-2 for all questions, although there is no significant
difference between the treatments conditioning on either stay-is-opt or swap-is-opt. By
Figure 3, this suggests HEF-0 (i.e., envy-free) allocations are perceived as more fair than either
HEF-1 or HEF-2 allocations.
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Variable value Pairs of Treatments
HEF-𝑘 , sEF1 HEF-𝑘 , EF1 sEF1, EF1 HEF-0, sEF1 HEF-1, sEF1 HEF-2, sEF1

All scenarios
0.286

𝑝 ∶ ☆☆☆
0.173

𝑝 ∶ ☆☆☆
0.604

𝑝 ∶ ☆☆☆
0.150

𝑝 ∶ ☆☆☆
0.306

𝑝 ∶ ☆☆☆
0.371

𝑝 ∶ ☆☆☆

Optimal
Choice

stay-is-opt
4.533

𝑝 ∶ ☆☆☆
0.512
𝑝 ∶ ns

0.113
†𝑝 ∶ ☆☆

4.415
𝑝 ∶ ☆☆☆

5.384
𝑝 ∶ ☆☆☆

2.752
𝑝 ∶ ns

swap-is-opt
0.346

𝑝 ∶ ☆☆☆
0.353

𝑝 ∶ ☆☆☆
1.021
𝑝 ∶ ☆

N/A
0.334

𝑝 ∶ ☆☆☆
0.357

𝑝 ∶ ☆☆☆

Instance
Size

small
0.294

𝑝 ∶ ☆☆☆
0.186

𝑝 ∶ ☆☆☆
0.634

𝑝 ∶ ☆☆☆
0.114

𝑝 ∶ ☆☆☆
0.380

𝑝 ∶ ☆☆☆
0.394

𝑝 ∶ ☆☆☆

large
0.268

𝑝 ∶ ☆☆☆
0.150

𝑝 ∶ ☆☆☆
0.561

𝑝 ∶ ☆☆☆
0.322

𝑝 ∶ ☆☆☆
0.253

𝑝 ∶ ☆☆☆
0.285

𝑝 ∶ ☆☆☆

Balance balanced
0.320

𝑝 ∶ ☆☆☆
0.167

𝑝 ∶ ☆☆☆
0.523

𝑝 ∶ ☆☆☆
0.246

𝑝 ∶ ☆☆☆
0.267

𝑝 ∶ ☆☆☆
0.426

𝑝 ∶ ☆☆☆

unbalanced
0.259

𝑝 ∶ ☆☆☆
0.178

𝑝 ∶ ☆☆☆
0.686

𝑝 ∶ ☆☆☆
0.073

𝑝 ∶ ☆☆☆
0.310

𝑝 ∶ ☆☆☆
0.329

𝑝 ∶ ☆☆☆

Repeated scenario (S7)
0.286

𝑝 ∶ ☆☆☆
0.211

𝑝 ∶ ☆☆☆
0.737

𝑝 ∶ ☆☆☆
0.091

𝑝 ∶ ☆☆☆
0.490

𝑝 ∶ ☆☆
0.338

𝑝 ∶ ☆☆☆

Table 4. Ratio of the swap rates and 𝑝-values of the test statistic for testing the independence of swap
rates and treatments under different pairs of treatments, and adjusting for different variables. The
𝜒2 test is used except when the 𝑝-value is annotated with a “†”, in which case, it is the result of the
Fisher’s exact test. The 𝑝-value of the test statistic is represented as follows: a cell labeled ns (not
significant) implies that 𝑝 > 0.05, ☆ for 𝑝 ∈ (0.01, 0.05⌋︀, ☆☆ for 𝑝 ∈ (0.001, 0.01⌋︀, and ☆☆☆ for 𝑝 < 0.001.

Fig. 7. Swap rates per treatment, swap-is-opt. Here, 𝑛 is the number of questions per treatment.

Treatment sEF1 HEF-𝑘 EF1 HEF-0 HEF-1 HEF-2
swap-is-opt

/ stay-is-opt
50.241

𝑝 ∶ ☆☆☆
3.835

𝑝 ∶ ☆☆☆
5.559

†𝑝 ∶ ☆☆☆ N/A
3.121

𝑝 ∶ ☆☆☆
6.514

𝑝 ∶ ☆☆☆
Table 5. Ratio of the swap rates and 𝑝-values of the test statistic for testing the independence of swap
rates and optimal choice under different treatments. The 𝜒2 test is used except when the 𝑝-value
is annotated with a “†”, in which case, it is the result of the Fisher’s exact test. The 𝑝-value of the
test statistic is represented as follows: a cell labeled ns (not significant) implies that 𝑝 > 0.05, ☆ for
𝑝 ∈ (0.01, 0.05⌋︀), ☆☆ for 𝑝 ∈ (0.001, 0.01⌋︀, and ☆☆☆ for 𝑝 < 0.001.

Cognitive effort on HEF-𝑘 allocations. Figure 8 presents the distribution of time spent per scenario
over all HEF-0, HEF-1 and HEF-2 scenarios. We find that overall, as the number of hidden goods
increases, the cognitive effort, measured as the amount of time spent in order to decide which bundle
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Fig. 8. Box-plot of time spent per scenario by treatment with averages shown. Outliers excluded.

Fig. 9. Box-plot of time spent per scenario by treatment with average shown, conditioned on
stay-is-opt. Outliers excluded. There were no such small EF1 scenarios.

to keep, also increases. Specifically, both the mean and variance of time spent increases as the value
of 𝑘 increases for HEF-𝑘 scenarios.

Notice that in an HEF-0 scenario, the participant already has the highest valued bundle and this is
readily verifiable since all goods are visible. However, as 𝑘 increases, the participant must reason
about and form beliefs about how the hidden goods may be allocated to the other pirates. The task
of computing and deciding whether it may be worth swapping for another pirate’s bundle therefore
becomes increasingly more complex as more goods are hidden.

Cognitive effort on stay-is-opt scenarios. As Figure 9 shows for stay-is-opt scenarios,
hiding goods under the HEF-𝑘 treatment comes at the cost of an increased cognitive burden on the
participants. Here, the participant’s bundle has the highest value. This is evident for the sEF1 and
EF1 treatments, but may not be clear under the HEF-𝑘 treatment, where goods may need to be hidden
in order to eliminate envy between the other pirates.

Effect Size. We supplement our results of statistical significance with their effect sizes. Table 9,
Table 10, Table 11, Table 12, and Table 13 demonstrate the effect size for each statistically significant
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Variable value Pairs of Treatments
HEF-0, HEF-1 HEF-0, HEF-2 HEF-1, HEF-2

All scenarios
0.494
𝑝 ∶ ☆☆

0.406
𝑝 ∶ ☆☆☆

0.826
𝑝 ∶ ns

Optimal
Choice

stay-is-opt
0.820
𝑝 ∶ ns

1.604
𝑝 ∶ ns

1.956
𝑝 ∶ ns

swap-is-opt N/A N/A
0.937
𝑝 ∶ ns

Instance
Size

small
0.299

𝑝 ∶ ☆☆☆
0.289

𝑝 ∶ ☆☆☆
0.966
𝑝 ∶ ns

large
1.271
𝑝 ∶ ns

1.130
𝑝 ∶ ns

0.889
𝑝 ∶ ns

Balance
balanced

0.992
𝑝 ∶ ns

0.578
𝑝 ∶ ns

0.627
𝑝 ∶ ns

unbalanced
0.237

𝑝 ∶ ☆☆☆
0.223

𝑝 ∶ ☆☆☆
0.941
𝑝 ∶ ns

Repeated scenario (Q7)
0.186
𝑝 ∶ ☆

0.270
𝑝 ∶ ns

1.448
𝑝 ∶ ns

Table 6. Ratio of swap rates and 𝑝-values of the 𝜒
2 statistic for testing the independence of swap

rates and treatments under different pairs of treatments, and adjusting for different variables.
Key: (ns : 𝑝 > 0.05) (☆ : 𝑝 ∈ (0.01, 0.05⌋︀), (☆☆ : 𝑝 ∈ (0.001, 0.01⌋︀), (☆☆☆ : 𝑝 < 0.001).

Variable Instance Size Pairs of Treatments
sEF1, EF1 sEF1, HEF-𝑘 EF1, HEF-𝑘

All scenarios
small 𝑝 ∶ ns 𝑝 ∶ ☆☆☆ 𝑝 ∶ ☆☆☆
large 𝑝 ∶ ☆ 𝑝 ∶ ☆☆☆ 𝑝 ∶ ☆☆☆

stay-is-opt
small N/A 𝑝 ∶ ☆ N/A
large 𝑝 ∶ ns 𝑝 ∶ ☆☆☆ 𝑝 ∶ ns

Variable Pairs of Treatments
HEF-0, HEF-1 HEF-0, HEF-2 HEF-1, HEF-2

All scenarios 𝑝 ∶ ns 𝑝 ∶ ☆☆ 𝑝 ∶ ns
Table 7. 𝑝-values of the 𝑡 statistic for testing equal means of participant response times per scenario
using Welch’s t-test – for different pairs of treatments, and adjusting for different variables.
Key: (ns : 𝑝 > 0.05) (☆ : 𝑝 ∈ (0.01, 0.05⌋︀), (☆☆ : 𝑝 ∈ (0.001, 0.01⌋︀), (☆☆☆ : 𝑝 < 0.001).

Variable Instance Size Pairs of Treatments
sEF1, EF1 sEF1, HEF-𝑘 EF1, HEF-𝑘

All senarios
small 𝑝 ∶ ☆ 𝑝 ∶ ☆☆☆ 𝑝 ∶ ☆☆☆
large 𝑝 ∶ ns 𝑝 ∶ ☆☆☆ 𝑝 ∶ ☆☆☆

Table 8. 𝑝-values of the 𝑡 statistic for testing equal means of participant reported feedback using
Welch’s t-test – for different pairs of treatments.
Key: (ns : 𝑝 > 0.05) (☆ : 𝑝 ∈ (0.01, 0.05⌋︀), (☆☆ : 𝑝 ∈ (0.001, 0.01⌋︀), (☆☆☆ : 𝑝 < 0.001).

test for Table 4 (and Table 1), Table 5, Table 6, Table 7, and Table 8 respectively. Effect sizes are
measured with Cramer’s V for 𝜒2 tests [Cramér, 1946] and Cohen’s d for Welch 𝑡-tests [Cohen,
1992].
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Variable value Pairs of Treatments
HEF-𝑘 , sEF1 HEF-𝑘 , EF1 sEF1, EF1 HEF-0, sEF1 HEF-1, sEF1 HEF-2, sEF1

All scenarios 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆

Optimal
Choice

stay-is-opt 𝑉 ∶ ☆ ns
†𝑂𝑅 ∶ 0.096

95%𝐶𝐼 ∶ (0.026, 0.447) 𝑉 ∶ ☆ 𝑉 ∶ ☆ ns

swap-is-opt 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆ N/A 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆☆☆

Instance
Size

small 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆

large 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆

Balance balanced 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆

unbalanced 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆

Repeated scenario (S7) 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆

Table 9. Effect size demonstrating the strength in statistically significant relationships between swap
rates and treatments – under different pairs of treatments, adjusting for different variables, and
corresponding to tests in Table 1. Not significant tests are labelled ns. Cramer’s V is reported for
𝜒
2 tests as follows: ☆ for 𝑉 ≤ 0.2, ☆☆ for 𝑉 ∈ (0.2, 0.6⌋︀, and ☆☆☆ for 𝑉 > 0.6. Odds ratio and 95%

confidence intervals are reported for Fisher’s exact test, annotated by “†.”

Treatment sEF1 HEF-𝑘 EF1 HEF-0 HEF-1 HEF-2
swap-is-opt

/ stay-is-opt 𝑉 ∶ ☆☆☆ 𝑉 ∶ ☆☆ †𝑂𝑅 ∶ 0.007
95% 𝐶𝐼 ∶ (0.002, 0.023) N/A 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆

Table 10. Effect size demonstrating the strength in statistically significant relationships between swap
rates and optimal choice, for different treatments in Table 5. Not significant tests are labelled ns.
Cramer’s V is reported for 𝜒

2 tests as follows: ☆ for 𝑉 ≤ 0.2, ☆☆ for 𝑉 ∈ (0.2, 0.6⌋︀, and ☆☆☆ for
𝑉 > 0.6. Odds ratio and 95% confidence intervals are reported for Fisher’s exact test, annotated by “†.”

Variable value Pairs of Treatments
HEF-0, HEF-1 HEF-0, HEF-2 HEF-1, HEF-2

All scenarios 𝑉 ∶ ☆ 𝑉 ∶ ☆ ns
Optimal
Choice

stay-is-opt ns ns ns
swap-is-opt N/A N/A ns

Instance
Size

small 𝑉 ∶ ☆☆ 𝑉 ∶ ☆☆ ns
large ns ns ns

Balance
balanced ns ns ns

unbalanced 𝑉 ∶ ☆ 𝑉 ∶ ☆☆ ns
Repeated scenario (S7) 𝑉 ∶ ☆☆ ns ns

Table 11. Effect size measured by Cramer’s V for 𝜒2 tests corresponding with Table 6, under different
pairs of treatments and adjusting for different variables. Not significant tests are labelled as ns.
Key: (ns : 𝑝 > 0.05) (☆ : 𝑉 ≤ 0.2), (☆☆ : 𝑝 ∈ (0.2, 0.6⌋︀), (☆☆☆ : 𝑝 > 0.6).
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Variable Instance Size Pairs of Treatments
sEF1, EF1 sEF1, HEF-𝑘 EF1, HEF-𝑘

All scenarios
small ns 𝑑 ∶ ☆☆ 𝑑 ∶ ☆
large 𝑑 ∶ ☆☆ 𝑑 ∶ ☆☆ 𝑑 ∶ ☆☆

stay-is-opt
small N/A 𝑑 ∶ ☆ N/A
large ns 𝑑 ∶ ☆☆ ns

Variable Pairs of Treatments
HEF-0, HEF-1 HEF-0, HEF-2 HEF-1, HEF-2

All scenarios ns 𝑑 ∶ ☆ ns
Table 12. Effect size measured by Cohen’s d for Welch t-tests corresponding with Table 7, under
different pairs of treatments and adjusting for different variables. Not significant tests are labelled as
ns.
Key: (☆ : 𝑑 ≤ 0.3), (☆☆ : 𝑑 ∈ (0.3, 0.7⌋︀), (☆☆☆ : 𝑑 > 0.7).

Variable Instance Size Pairs of Treatments
sEF1, EF1 sEF1, HEF-𝑘 EF1, HEF-𝑘

All scenarios
small 𝑑 ∶ ☆ 𝑑 ∶ ☆☆☆ 𝑑 ∶ ☆☆☆
large ns 𝑑 ∶ ☆☆☆ 𝑑 ∶ ☆☆☆

Table 13. Effect size measured by Cohen’s d for Welch t-tests corresponding with Table 8, under
different pairs of treatments and adjusting for different variables. Not significant tests are labelled as
ns.
Key: (mp☆ : 𝑑 ≤ 0.3), (☆☆ : 𝑑 ∈ (0.3, 0.7⌋︀), (☆☆☆ : 𝑑 > 0.7).
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