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In rank aggregation, the task is to aggregate multiple weighted input rankings into a single output ranking.
While numerous methods, so-called social welfare functions (SWFs), have been suggested for this problem,
all of the classical SWFs tend to be majoritarian and are thus not acceptable when a proportional ranking
is required. Motivated by this observation, we will design SWFs that guarantee that every input ranking is
proportionally represented by the output ranking. Specifically, our central fairness condition requires that
the number of pairwise comparisons between candidates on which an input ranking and the output ranking
agree is proportional to the weight of the input ranking. As our main contribution, we present a simple
SWF called the Proportional Sequential Borda rule, which satisfies this condition. Moreover, we introduce
two variants of this rule: the Ranked Method of Equal Shares, which has a more utilitarian flavor while still
satisfying our fairness condition, and the Flow-adjusting Borda rule, which satisfies an even stronger fairness
condition. Many of our axioms and techniques are inspired by results on approval-based committee voting
and participatory budgeting, where the concept of proportional representation has been studied in depth.
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1 Introduction
For booking flights or hotels, many users consult aggregator websites such as google flights,
skyscanner, or booking.com. These websites allow users to quickly get an overview of the available
flights or hotels by offering several ways to sort the options. For instance, flights may be sorted by
their price, travel time, or number of stop-overs, whereas hotels are commonly sorted by price or
user rating. Furthermore, aggregator websites typically offer a recommended ranking that combines
multiple criteria.1 More generally, it would be desirable to allow users to specify importance weights
for individual criteria and to compute customized output rankings based on these weights.
The problem of finding such aggregate rankings is commonly studied under the term rank

aggregation and has attracted significant attention in social choice theory [e.g., 2, 7] and beyond
[e.g., 15, 25, 43, 47]. In more detail, in rank aggregation, we get a profile of weighted rankings as
input, where the weights are non-negative and add up to one, and we need to return a single output
ranking. For instance, this model captures situations where users want to sort hotels to 60% by
their price and 40% by their user rating as this task requires us to combine the ranking by price
and the ranking by user rating. Moreover, in social choice theory a multitude of rank aggregation
methods, so-called social welfare functions (SWFs), have been suggested, with the most prominent
examples including the Kemeny rule [22, 51], various types of scoring rules [6, 16, 30, 46], and
Condorcet-type rules [17, 19].

However, as observed by Lederer et al. [31], none of these classic SWFs is suitable for aggregating
rankings based on user-specified weights because they are heavily majoritarian. For example, if a
user wants to combine two inverse rankings with weights of 51% and 49%, most SWFs will simply
return the ranking with the larger weight instead of actually combining the rankings. Motivated
by this observation, Lederer et al. [31] have initiated the study of proportional SWFs, aiming for
methods that represent the input rankings proportional to their weights.2 Specifically, these authors
formalize proportional representation in terms of the number of pairs of candidates on which the
input and output rankings agree on: an input ranking with weight 𝛼 should agree at least with an 𝛼
fraction of all pairwise comparisons of the output ranking. Moreover, Lederer et al. [31] suggest the
Squared Kemeny rule to compute proportional rankings. However, while the Squared Kemeny rule
is certainly more proportional than established SWFs, it does not satisfy the aforementioned fairness
condition in general, thus leaving the design of fully proportional SWFs as an open problem.

1.1 Our Contribution
In this paper, we will design the first truly proportional SWFs by employing ideas from approval-
based committee voting and participatory budgeting, two fields in which proportionality has been
studied extensively [see, e.g., 29, 41]. To explain our results, we define the utility of an input
ranking ≻ for an output ranking ▷ as the number of pairwise comparisons these rankings agree
on, i.e., 𝑢 (≻,▷) = |{(𝑥,𝑦) : 𝑥 ≻ 𝑦 and 𝑥 ▷ 𝑦}|. Now, since every ranking on𝑚 candidates induces(
𝑚
2
)
pairwise comparisons between candidates, the fairness axiom of Lederer et al. [31] formally

requires that every input ranking with weight 𝛼 obtains a utility of at least ⌊𝛼
(
𝑚
2
)
⌋ from the output

ranking. We call this condition unanimous proportional justified representation (uPJR) because,
when viewing rankings as approval ballots over pairs of candidates, this axiom weakens a well-
known proportionality notion called proportional justified representation [42] by only focusing on
1See, e.g., https://www.skyscanner.net/media/how-skyscanner-works for an overview of how skyscanner computes its
recommended ranking.
2We note that proportionality is often interpreted as a fairness notion for the input rankings. In rank aggregation, there is
another influential line of work that investigates fairness with respect to attributes of candidates [e.g., 12, 38, 48]. Specifically,
the idea of these papers is that some candidates have protected attributes that should be fairly represented in the output
ranking, regardless of the information provided of the input rankings.

https://www.skyscanner.net/media/how-skyscanner-works
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groups of voters that unanimously report the same ballot. Based on this relation to approval-based
committee voting, we also introduce two further fairness notions for rank aggregation called
unanimous justified representation (uJR) and strong proportional justified representation (sPJR), which
respectively weaken and strengthen uPJR. As our main contribution, we propose SWFs that satisfy
these fairness conditions. Specifically, we will show the following results:

• As a warm-up, we will first analyze uJR, which demands that every input ranking with a
weight of at least 1/

(
𝑚
2
)
obtains a non-zero utility from the output ranking. We note that

uJR can be seen as the counterpart of justified representation, another well-known propor-
tionality notion in approval-based committee voting [3]. We show that the Squared Kemeny
rule by Lederer et al. [31] severely fails this condition (Proposition 1), thus demonstrating
the need of more proportional rules. Moreover, we also design a simple rule inspired by
Chamberlin-Courant approval voting that satisfies uJR (Proposition 2).

• We next turn to uPJR and, inspired by similar results in approval-based committee voting
and participatory budgeting [8, 37], prove that uPJR is implied by a more structured fairness
axiom called rank-priceability (Proposition 3). Based on this insight, we design a simple
SWF, the Proportional Sequential Borda rule (PSB), that satisfies rank-priceability and thus
uPJR (Theorem 1). Roughly, PSB repeatedly picks the Borda winner in the current profile,
deletes this candidate from the profile, and reduces the weights of each input ranking
proportional to its contribution to the score of the Borda winner.

• Thirdly, we introduce the Ranked Method of Equal Shares (RMES) as a more utilitarian variant
of PSB. Moreover, this SWF closely resembles the Method of Equal Shares, one of the
most prominent tools for proportional decision making [36, 37]. Roughly, RMES distributes a
budget of

(
𝑚
2
)
to the input rankings proportional to their weights, which is used to repeatedly

buy candidates. In particular, in every step, the affordable candidate that minimizes the
cost per utility ratio for the input rankings is bought. While this method satisfies rank-
priceability and thus uPJR (Theorem 3), it is also rather utilitarian: the first ⌊𝑚4 ⌋ candidates in
this ranking (or roughly 7

16 of the total utility) agree with the majoritarian ranking obtained
by repeatedly picking the Borda winner and deleting it from the profile (Proposition 4).

• We further analyze sPJR which extends the reasoning of PJR to arbitrary groups of in-
put rankings: if a group of input rankings has a total weight of 𝛼 , the output ranking
should agree with at least ⌊𝛼

(
𝑚
2
)
⌋ pairwise comparisons of these rankings. As we will show,

both PSB and RMES fail this condition because, roughly, rank-priceability does not entail
guarantees for groups of rankings. We thus introduce a refinement of rank-priceability
called pair-priceability and show that this notion implies sPJR (Proposition 5). Moreover,
we propose another variant of PSB called the Flow-adjusting Borda rule (FB) that satisfies
rank-priceability (Theorem 5). Notably, FB only augments PSB by using a more sophisticated
scheme for updating the weights of the input rankings.

• Inspired by an analogous result for the Squared Kemeny rule [31, Theorem 4.2], we examine
the average utility our SWFs guarantee to a group of rankings, as a function of the total
weight of the group. For each of our SWFs, we show that the average utility of every group
of rankings is at least linear in the weight of the group. In more detail, we prove that the
average utility of every group of rankings with a total weight of 𝛼 is at least 𝛼

4
(
𝑚
2
)
− 3

16 , thus
providing another strong proportionality guarantee for our rules (Theorems 2, 4 and 6).

1.2 Related Work
Rank aggregation is one of the oldest problems in social choice theory as even Arrow’s impossibility
theorem has originally been shown in this setting [1]. There is thus a large body of work on SWFs
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and we refer to the textbooks by Arrow et al. [2] and Brandt et al. [7] for an overview of this
research area.

Our paper is related to an influential stream of works that studies scoring rules for rank aggrega-
tion [e.g,. 6, 20, 22, 46, 50, 51]. Specifically, positional scoring rules such as the Borda rule compute
the output ranking by assigning scores to the candidates and sorting the candidates in descending
order of their scores. Such SWFs have attracted significant attention and have, e.g., been repeatedly
characterized based on a population-consistency condition [e.g., 34, 46, 49]. Moreover, positional
scoring rules can be easily modified to work sequentially by repeatedly adding the candidate with
the highest (resp. lowest) score to the next best (resp. worst) position of the output ranking [e.g.,
6, 20, 46]. The Proportional Sequential Borda rule and the Flow-adjusting Borda rule are closely
related to this approach as we repeatedly add the Borda winner to the ranking, but we carefully
update the weights of the input rankings to obtain a proportional outcome. Furthermore, our work
is related to the Kemeny rule, another well-studied SWF [e.g., 11, 22, 50, 51], as this rule maximizes
the utilitarian social welfare in our setting.
While the aforementioned works are influential, they do not focus on proportional decision

making. Indeed, the study of proportionality in rank aggregation has only recently been initiated
by Lederer et al. [31] who suggested the Squared Kemeny rule to compute proportional rankings.
Moreover, Aziz et al. [4] have studied a prefix-based fairness concept for rank aggregation, which
is unrelated to uPJR. We will thus rely on ideas from approval-based committee voting [29] and
participatory budgeting [5, 41] to formalize proportionality. In particular, all our fairness axioms
are closely related to fairness notions from this literature [e.g., 3, 8, 37, 42]. Moreover, the budgeting
approach used for defining our SWFs is reminiscent of the Method of Equal Shares, one of the most
prominent rules in these settings [36, 37].

Inspired by these works on approval-based committee voting and participatory budgeting, propor-
tionality has been studied in numerous other models, some of which are related to rank aggregation.
In particular, Skowron et al. [45] and Brill and Israel [9] study the problem of proportionally aggre-
gating the voters’ approval ballots into a ranking, but they focus on a prefix-based fairness concept.
Moreover, there are models of repeated decision making [10, 14, 26, 27], where a candidate needs
to be selected in each round and each group of voters should be fairly represented over all rounds.
However, as the sequence of candidates is not interpreted as a ranking, this literature again focuses
on different fairness notions. Finally, Masařík et al. [33] study a general model of proportional
decision making, which contains rank aggregation as a special case. However, applying these results
to rank aggregation gives only very mild guarantees and, e.g., allow that groups of agents of size
less than 1

𝑚
are left without any representation.

Finally, rank aggregation has also gained significant attention outside of social choice theory.
For example, the problem of rank aggregation is considered in computational biology [e.g., 25, 32],
machine learning [39, 43, 47], metasearch [18, 40], and crowdsourcing [15, 35]. We thus believe that
our work has also the potential to provide novel insights for these applications of rank aggregation.

2 Preliminaries
Let 𝐶 = {𝑥1, . . . , 𝑥𝑚} denote a set of𝑚 candidates. A ranking ≻ is a strict linear order over 𝐶 , and
we typically write rankings as comma-separated lists. For instance, ≻ = 𝑥1, 𝑥2, 𝑥3 means that 𝑥1
is preferred to 𝑥2 and 𝑥2 is preferred to 𝑥3. The set of all rankings over 𝐶 will be denoted by R.
Following Lederer et al. [31], we define a ranking profile 𝑅 as a function from R to [0, 1] such that∑

≻∈R 𝑅(≻) = 1. Less formally, a ranking profile specifies for every ranking ≻ ∈ R a weight 𝑅(≻)
and the total weight sums up to one. These weights may be interpreted as the importance scores in
a multi-criteria decision-making problem or as the shares of voters that report a given ranking.
Furthermore, we say a function 𝑆 : R → [0, 1] is a subprofile of a profile 𝑅 if 𝑆 (≻) ≤ 𝑅(≻) for all
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≻ ∈ R. In a voting setting, a subprofile 𝑆 can be interpreted as an arbitrary group of voters. We
define the weight of a subprofile 𝑆 by |𝑆 | = ∑

≻∈R 𝑆 (≻) and observe that |𝑆 | ∈ [0, 1].
Given a ranking profile 𝑅, our goal is to aggregate the input rankings into one output ranking.

For this problem, we use social welfare functions (SWFs), which are functions that map every
ranking profile to a single output ranking. To clearly distinguish between input rankings and
output rankings, we will write ≻ for the former and ▷ for the latter. The assumption that SWFs
always choose a single output ranking will sometimes require tie-breaking as multiple rankings can
be tied for the win. We will typically break such ties in favor of candidates with smaller indices and
note that this assumption does not affect our results. Indeed, all our results also hold when viewing
our rules as set-valued SWFs, but this model introduces unnecessary notational complexity.

2.1 Proportionality Axioms
The central goal of this paper is to find output rankings that represent the input rankings propor-
tionally to their weights: a ranking with weight 𝛼 should have an influence of 𝛼 on the outcome.
Following the approach of Lederer et al. [31], we will formalize this idea by requiring that the
number of pairs of candidates for which an input ranking and the output ranking agree is propor-
tional to the weight of the input ranking. We moreover note that we define our fairness axioms as
properties of rankings; an SWF 𝑓 satisfies a given axiom if its chosen ranking 𝑓 (𝑅) satisfies the
axiom for all profiles 𝑅.

To formalize our fairness axioms, we define the utility of a ranking ≻ for another ranking ▷ by
𝑢 (≻,▷) = |{(𝑥,𝑦) ∈ 𝐶2 : 𝑥 ≻ 𝑦 ∧ 𝑥 ▷ 𝑦}|. That is, the utility of an input ranking ≻ for the output
ranking ▷ is the number of pairs of candidates for which the rankings agree. Furthermore, we let
𝑢 (≻, 𝑥, 𝑋 ) = |{𝑦 ∈ 𝑋 \ {𝑥} : 𝑥 ≻ 𝑦}| denote the utility of a candidate 𝑥 within the set of candidates
𝑋 with respect to ≻. Alternatively, 𝑢 (≻, 𝑥, 𝑋 ) can also be interpreted as the Borda score of 𝑥 within
the set 𝑋 . This term will be crucial in our analysis because 𝑢 (≻,▷) = ∑𝑚−1

𝑖=1 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚})
for every input ranking ≻ and output ranking ▷ = 𝑥1, . . . , 𝑥𝑚 . We note that the utility 𝑢 (≻,▷) is
dual to the swap distance swap(≻,▷) = |{(𝑥,𝑦) ∈ 𝐶2 : 𝑥 ≻ 𝑦 ∧ 𝑦 ▷ 𝑥}| used by Lederer et al. [31].
Specifically, it holds for all rankings ≻,▷ ∈ R that 𝑢 (≻,▷) =

(
𝑚
2
)
− 𝑠𝑤𝑎𝑝 (≻,▷) since

(
𝑚
2
)
is the

maximal utility (or swap distance) for two rankings with𝑚 candidates. Therefore, our results could
also be phrased in terms of swap distance.
We will now introduce our first fairness condition called unanimous proportional justified

representation (uPJR), which requires that the utility of every ranking should be proportional to its
weight. Both Lederer et al. [31] and Aziz et al. [4, Section 8] have investigated this condition but
only present SWFs that approximate uPJR.

Definition 1 (Unanimous Proportional Justified Representation). A ranking ▷ satisfies unanimous
proportional justified representation (uPJR) for a profile 𝑅 if 𝑢 (≻,▷) ≥ ⌊𝑅(≻) ·

(
𝑚
2
)
⌋ for all ≻ ∈ R.

The name of this axiom is motivated by the fact that uPJR can be seen as a weakening of
proportional justified representation (PJR), a well-known fairness condition for approval-based
committee voting [42]. In more detail, in approval-based committee voting, a set of voters 𝑁 =

{1, . . . , 𝑛} report approval ballots 𝐴𝑖 ⊆ 𝐶 over the candidates and the goal is to choose a subset of
the candidates of predefined size 𝑘 . Then, the idea of PJR is that, if a group of voters 𝑆 is large enough
to deserve ℓ seats and the voters in 𝑆 agree on ℓ approved candidates, the winning committee
should contain at least ℓ candidates that are approved by voters in 𝑆 . More formally, a committee
𝑊 satisfies PJR for an approval profile 𝐴 if |𝑊 ∩ ⋃

𝑖∈𝑆 𝐴𝑖 | ≥ ℓ for every group of voters 𝑆 with
|𝑆 | ≥ ℓ𝑛

𝑘
and |⋂𝑖∈𝑆 𝐴𝑖 | ≥ ℓ .

PJR can be naturally adapted to rank aggregation by associating each ranking ≻ with the
set 𝐴(≻) = {(𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐶 × 𝐶 : 𝑥𝑖 ≻ 𝑥 𝑗 }, which can be interpreted as an approval ballot over
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𝐶2 = {(𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐶×𝐶 : 𝑥𝑖 ≠ 𝑥 𝑗 }. Hence, we can view the problem of rank aggregation as an instance
of approval-based committee voting over the set𝐶2 with transitivity constraints. Specifically, given
the input ballots 𝐴(≻) with weights 𝑅(≻), we need to choose a transitive subset of 𝐶2 of size
𝑘 =

(
𝑚
2
)
. Applying PJR to this instance of committee voting results in the following condition: a

ranking ▷ satisfies PJR for a profile 𝑅 if |𝐴(▷) ∩ ⋃
≻∈R : 𝑆 (≻)>0 𝐴(≻)| ≥ ℓ for every subprofile 𝑆

of 𝑅 with |𝑆 | ≥ ℓ/
(
𝑚
2
)
and |⋂≻∈R : 𝑆 (≻)>0 𝐴(≻)| ≥ ℓ . Finally, uPJR arises from PJR by additionally

requiring that 𝑆 only assigns positive weight to a single ranking.
In addition to uPJR, we will consider two more fairness axioms in this paper. The first one,

unanimous justified representation, is a weakening of uPJR which requires that each rankings
with a weight of at least 1/

(
𝑚
2
)
should get a non-zero utility. We observe that this axiom can be

seen as the counterpart to justified representation (JR), another well-known fairness condition in
approval-based committee elections [3].3

Definition 2 (Unanimous Justified Representation (uJR)). A ranking ▷ satisfies unanimous justified
representation (uJR) for a profile 𝑅 if 𝑢 (≻,▷) ≥ 1 for every ≻ ∈ R with 𝑅(≻) ≥ 1/

(
𝑚
2
)
.

Secondly, we will also consider a strengthening of PJR, which extends the reasoning of uPJR
to arbitrary groups of rankings. Specifically, sPJR requires that for every subprofile of weight 𝛼 ,
the output ranking chooses 𝛼 pairwise comparisons from the union of the rankings in 𝑆 . We note
that sPJR does not impose any cohesiveness conditions, so it is a more demanding proportionality
axiom than PJR and uPJR.

Definition 3 (Strong Proportional Justified Representation). A ranking ▷ satisfies strong propor-
tional justified representation (sPJR) if |𝐴(▷) ∩ ⋃

≻∈R : 𝑆 (≻)>0 𝐴(≻)| ≥ ⌊|𝑆 | ·
(
𝑚
2
)
⌋ for all subprofiles

𝑆 of 𝑅.

Finally, we will also quantitatively measure the fairness of SWFs. Specifically, following Lederer
et al. [31] and Skowron and Górecki [44], we will derive lower bounds on the average utility of
an arbitrary subprofile 𝑆 , as a function of the size of |𝑆 |. This approach allows for a much more
fine-grained analysis than an axiomatic analysis. On the down side, the assumption that 𝑆 can be
an arbitrary subprofile restricts the guarantees we can show. For instance, when |𝑆 | = 1, the best
bound one can prove is 1

2
(
𝑚
2
)
, which is the average utility of every output ranking for the profile

where two inverse rankings each have a weight of 1
2 .

3 Results on Unanimous Justified Representation
As a warm-up, we will start by examining uJR. We first note that traditional SWFs, such as the
Kemeny rule or the Borda rule, fail this condition because these rules are heavily majoritarian. We
will thus focus on the Squared Kemeny rule which has been explicitly proposed by Lederer et al.
[31] for computing proportional rankings. In more detail, we will show that this SWF fails uJR
arbitrarily badly as𝑚 increases (Section 3.1). Furthermore, in Section 3.2, we will devise a simple
rule inspired by Chamberlin-Courant approval voting that satisfies uJR.

3.1 The Squared Kemeny Rule
We start by analyzing the Squared Kemeny rule, which chooses the ranking that minimizes the total
squared swap distance to the input rankings. Formally, the Squared Kemeny rule (SqK) is defined by
3uJR is equivalent to JR in rank aggregation. In particular, the latter axiom requires that |𝐴(▷) ∩⋃

≻∈R : 𝑆 (≻)>0 𝐴(≻) | ≥ 1
if |𝑆 | ≥

(𝑚
2
)−1 and | ⋂≻∈R : 𝑆 (≻) 𝐴(≻) | ≥ 1 for all subprofiles 𝑆 . Now, if 𝑆 assigns positive weight to two rankings ≻1 and

≻2, there is a pair of candidates 𝑥1, 𝑥2 such that 𝑥1 ≻1 𝑥2 and 𝑥2 ≻2 𝑥1. Consequently, every output ranking agrees with
either ≻1 or ≻2 in at least one pair of candidates. Hence, JR is trivial in rank aggregation unless 𝑆 assigns a positive weight
to a single ranking and it reduces to uJR in this case.
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SqK(𝑅) = arg min▷∈R
∑

≻∈R 𝑅(≻) ·swap(≻,▷)2 or, equivalently, SqK(𝑅) = arg min▷∈R
∑

≻∈R 𝑅(≻) ·
(
(
𝑚
2
)
− 𝑢 (≻,▷))2. We note that there can be multiple rankings that minimize the squared swap

distance, so a full definition of this rule requires further tie-breaking. However, the tie-breaking
will not matter for our subsequent proposition, so we omit these details.

We will next prove that SqK fails uJR for all𝑚 ≥ 5. Specifically, we will present a family of profiles
𝑅 such that 𝑅(≻) = 𝑚

5 /
(
𝑚
2
)
for some ranking ≻ but SqK uniquely chooses the inverse ranking of ≻.

This means that the Squared Kemeny rule does not even approximate uJR: for every 𝑘 ∈ N, there is
a number of candidates𝑚, a profile 𝑅, and a ranking ≻ such that ≻ deserves a utility of 𝑘 in 𝑅 but
obtains a utility of 0.

Proposition 1. For all 𝑚 ≥ 5, there is a profile 𝑅 and ranking ≻ such that 𝑅(≻) = 𝑚
5 /

(
𝑚
2
)
and

𝑢 (≻, SqK(𝑅)) = 0.

Proof Sketch. We consider four rankings to prove this proposition: ≻1 is given by ≻1 =

𝑥1, 𝑥2, . . . , 𝑥𝑚 , ≻2 by ≻2 = 𝑥1, 𝑥𝑚, . . . , 𝑥2, ≻3 is an arbitrary ranking that bottom-ranks 𝑥1 and
agrees with ⌊ 1

2
(
𝑚−1

2
)
⌋ pairwise comparisons with ≻1, and ≻4 also bottom-ranks 𝑥1 and arranges the

candidates 𝑥2, . . . , 𝑥𝑚 inversely to ≻3. For example, if𝑚 = 5, we may choose the following rankings.

≻1 = 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≻2 = 𝑥1, 𝑥5, 𝑥4, 𝑥3, 𝑥2

≻3 = 𝑥5, 𝑥2, 𝑥3, 𝑥4, 𝑥1 ≻4 = 𝑥4, 𝑥3, 𝑥2, 𝑥5, 𝑥1

Further, let 𝑅 denote the profile given by 𝑅(≻1) = 𝑚
5 ·

(
𝑚
2
)−1 and 𝑅(≻2) = 𝑅(≻3) = 𝑅(≻4) =

1
3 · (1 − 𝑚

5 ·
(
𝑚
2
)−1). We show that the Squared Kemeny rule picks the ranking SqK(𝑅) = 𝑥𝑚, . . . , 𝑥1

for 𝑅, thus leaving ≻1 without representation. While the proof of this claim is tedious, we note
three high-level ideas. First, it can be shown that the output ranking must generate a higher utility
for ≻2 than for ≻1 because 𝑅(≻2) > 𝑅(≻1). Secondly, we show that the closer the output ranking
▷ without 𝑥1 is to 𝑥𝑚, . . . , 𝑥2, the lower we must rank 𝑥1 in ▷. For instance, if 𝑥5 ▷ 𝑥4 ▷ · · · ▷ 𝑥2,
we get that 𝑥1 must be bottom-ranked. Thirdly, we prove that if 𝑥1 is ranked sufficiently low in
▷, then it is optimal to order the candidates 𝑥5, . . . , 𝑥2 inverse to ≻1 because the weight of ≻2 is
significantly larger than that of ≻1. By formalizing these ideas, it follows that SqK(𝑅) = 𝑥𝑚, . . . , 𝑥1,
thus proving the proposition. □

3.2 The Chamberlin-Courant SWF
In light of Proposition 1, one may think that involved techniques are required to design SWFs
satisfying uJR. We will next refute this hypothesis by introducing a very simple SWF inspired by
Chamberlin-Courant approval voting that satisfies this fairness condition. To this end, we recall that
Chamberlin-Courant approval voting is an approval-based committee voting rule which chooses
the committee that maximizes the number of voters who approve at least one selected candidate
[13, 28]. Put differently, this rule maximizes the number of voters that have a utility of at least 1.
We adapt this idea to the context of rank aggregation by defining the score function 𝑠 : N0 → R
given by 𝑠 (𝑥) = 1 if 𝑥 > 0 and 𝑠 (0) = 0. Then, the Chamberlin-Courant SWF chooses a ranking ▷
that maximizes

∑
≻∈R 𝑅(≻) · 𝑠 (𝑢 (≻,▷)), with ties broken arbitrarily. We will next show that this

SWF satisfies uJR.

Proposition 2. The Chamberlin-Courant SWF satisfies uJR.

Proof. Fix a profile 𝑅 and let ▷ denote the ranking chosen by the Chamberlin-Courant SWF.
Hence, ▷ maximizes

∑
≻∈R 𝑅(≻) · 𝑠 (𝑢 (≻,▷)) and therefore also

∑
≻∈R 𝑅(≻) · (𝑠 (𝑢 (≻,▷)) − 1). We

next observe that it holds for all ≻,▷′ ∈ R that 𝑠 (𝑢 (≻,▷′)) = 0 if and only if ≻ orders the candidates
inversely to ▷′. This means that

∑
≻∈R 𝑅(≻) · (𝑠 (𝑢 (≻,▷′)) − 1) = −𝑅(◀′) for all ▷′ ∈ R, where ◀′
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denotes the inverse ranking to ▷′. Finally, since ▷ maximizes
∑

≻∈R (𝑠 (𝑢 (≻,▷)) − 1), it follows that
its inverse ranking ◀ minimizes 𝑅(◀). Since |𝑅 | = 1, this implies that 𝑅(◀) ≤ 1

𝑚! . Hence, the only
ranking with utility 0 has a weight of at most 1

𝑚! < 1/
(
𝑚
2
)
, which shows that uJR is satisfied. □

4 Results on Proportional Justified Representation
We next turn to the analysis of uPJR and sPJR. Specifically, we will shows that these proportionality
axioms are implied by two notions of priceability, which we respectively call rank-priceability and
pair-priceability. Based on these more structured axioms, we design several SWFs that satisfy uPJR
and sPJR. Intriguingly, all of these SWFs rely on the idea of sequentially choosing candidates based
on their Borda score and only aim at slightly different objectives. Moreover, we will show that each
of our SWFs guarantees a high average utility to every subprofile. For space reasons, we defer the
proofs of most of our results to the appendix.

4.1 Rank-priceability and the Proportional Sequential Borda rule
In this section, we will present our first SWF that satisfies uPJR, namely the Proportional Sequential
Borda rule (PSB). To this end, we will discuss a more structured fairness condition called rank-
priceability and show that this condition implies uPJR. Based on this result, we will then prove that
PSB satisfies uPJR. Furthermore, we will show that PSB guarantees an average utility of at least
|𝑆 |
4

(
𝑚
2
)
− 3

16 to every subprofile 𝑆 .
We start by introducing rank-priceability, which is inspired by the concept of priceability studied

in approval-based committee voting and participatory budgeting [e.g., 8, 37]. In these settings,
voters report approval ballots over costly candidates and we need to choose a subset of candidates
subject to a committee size or a budget constraint. The idea of priceability is that it should be
possible to explain the outcome by a payment scheme from the voters to the chosen candidates. In
more detail, a set of candidates𝑊 is called priceable if there is a virtual budget 𝐵 that is uniformly
distributed among the voters and a payment scheme that satisfies the following conditions:

(1) Voters only spend their share of the budget on their approved candidates in𝑊 .
(2) The total budget spent on each candidate in𝑊 is equal to its cost.
(3) The unspent budget of any group of voters is not enough to pay for a commonly approved

candidate outside of𝑊 .
We next aim to transfer this axiom to rank aggregation. To this end, we assume that candidates

will be bought sequentially and we update the cost of candidates and the payment willingness of
rankings in each step. In more detail, in every step, the cost of a candidate will be the maximal
utility it can generate for a ranking and the payment willingness of a ranking will be the additional
utility it obtains by assigning the considered candidate to the next position in the ranking. To
make this more formal, let ▷ = 𝑥1, . . . , 𝑥𝑚 denote an arbitrary ranking. If we place 𝑥𝑖 in the 𝑖-th
position of the output ranking after 𝑥1, . . . , 𝑥𝑖−1 have been put at positions 1, . . . , 𝑖 − 1, we generate
a utility of 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) for every input ranking ≻. We thus require that no ranking pays
more than 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) for candidate 𝑥𝑖 . Moreover, since 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) ≤ 𝑚 − 𝑖 for
all ≻ ∈ R and 𝑢 (▷, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) =𝑚 − 𝑖 , we set the cost of 𝑥𝑖 to𝑚 − 𝑖 . Consequently, the total
cost of all candidates is

∑𝑚
𝑖=1𝑚 − 𝑖 =

(
𝑚
2
)
. Finally, because there is no counterpart to Condition

(3) of priceability in rank aggregation, we will fix the budget to
(
𝑚
2
)
and require that the total

unspent budget is less than 1. As a consequence, it may not be possible to pay for all candidates,
so we use the costs of the candidates only as upper bounds. Hence, our condition may be dubbed
"approximate perfect priceability", because the total budget perfectly matches the total cost of the
ranking but we may not be able to cover the cost of all candidates. Formalizing these ideas results
in the following condition, which we call rank-priceability.
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Definition 4 (Rank-Priceability). A ranking ▷ = 𝑥1, . . . , 𝑥𝑚 is rank-priceable for a profile 𝑅 if there
is a payment function 𝜋 : R ×𝐶 → R such that

(1) 0 ≤ 𝜋 (≻, 𝑥𝑖 ) ≤ 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) for all ≻ ∈ R and 𝑥𝑖 ∈ 𝐶 ,
(2)

∑
𝑥𝑖 ∈𝑋 𝜋 (≻, 𝑥𝑖 ) ≤

(
𝑚
2
)
· 𝑅(≻),

(3)
∑

≻∈R 𝜋 (≻, 𝑥𝑖 ) ≤ 𝑚 − 𝑖 for all 𝑖 ∈ {1, . . . ,𝑚}, and
(4)

∑
≻∈R

∑
𝑥𝑖 ∈𝐶 𝜋 (≻, 𝑥𝑖 ) >

(
𝑚
2
)
− 1.

As usual, an SWF 𝑓 is rank-priceable if 𝑓 (𝑅) satisfies this condition for every profile 𝑅.
We will next show that rank-priceability implies uPJR, thereby transferring one of the central

results of approval-based committee voting to rank aggregation [8, 37].

Proposition 3. If a ranking is rank-priceable for a profile, it also satisfies uPJR.

Proof. Assume for contradiction that there is a profile 𝑅 and ranking ▷ = 𝑥1, . . . , 𝑥𝑚 such that
▷ satisfies rank-priceability but not uPJR. Since ▷ fails uPJR, there is an input ranking ≻ and an
integer ℓ ∈ N such that 𝑅(≻) ≥ ℓ/

(
𝑚
2
)
but 𝑢 (≻,▷) < ℓ . Since both 𝑢 (≻,▷) and ℓ are integers, this

means that 𝑢 (≻,▷) ≤ ℓ − 1. Next, let 𝜋 denote a payment scheme verifying the rank-priceability
of ▷. By Condition (1), we have that 𝜋 (≻′, 𝑥𝑖 ) ≤ 𝑢 (≻′, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) for all 𝑥𝑖 ∈ 𝐶 and ≻′ ∈ R.
Moreover, since

∑𝑚
𝑖=1 𝑢 (≻′, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) = 𝑢 (≻′,▷) for all rankings ≻′, we conclude that

𝑚∑︁
𝑖=1

𝜋 (≻, 𝑥𝑖 ) ≤
𝑚∑︁
𝑖=1

𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) = 𝑢 (≻,▷) ≤ ℓ − 1 ≤ 𝑅(≻) ·
(
𝑚

2

)
− 1.

Further, by Condition (2) of rank-priceability, we have that∑︁
≻′∈R\{≻}

∑︁
𝑥𝑖 ∈𝐶

𝜋 (≻′, 𝑥𝑖 ) ≤
(
𝑚

2

)
·

∑︁
≻′∈R\{≻}

𝑅(≻′) =
(
𝑚

2

)
· (1 − 𝑅(≻)) .

By combining our previous two inequalities, we derive that∑︁
≻′∈R

∑︁
𝑥𝑖 ∈𝐶

𝜋 (≻′, 𝑥𝑖 ) ≤
(
𝑚

2

)
𝑅(≻) − 1 +

(
𝑚

2

)
(1 − 𝑅(≻)) =

(
𝑚

2

)
− 1.

However, this contradicts Condition (4) of rank-priceability. Hence, our initial assumption is wrong
and ▷ fails rank-priceability if it fails uPJR. □

Notably, the proof of Proposition 3 does not use the third condition of rank-priceability. Moreover,
Condition (4) of this axiom can be weakened to only require

∑
𝑥𝑖 ∈𝐶 𝜋 (≻, 𝑥𝑖 ) >

(
𝑚
2
)
· 𝑅(≻) − 1 for all

≻ ∈ R. When weakening Condition (4) in this way and omitting Condition (3), rank-priceability is
equivalent to uPJR. We nevertheless decided to define rank-priceability based on Conditions (3)
and (4) because these constraints give more guidance for the design of SWFs. We will next clarify
this point with an example demonstrating the difference between uPJR and rank-priceability.

Example 1 (uPJR does not imply rank-priceability.). Consider the following 6 rankings.
≻1 = 𝑦1, 𝑦2, 𝑦3, 𝑥1, 𝑥2 ≻2 = 𝑦2, 𝑦3, 𝑦1, 𝑥1, 𝑥2 ≻3 = 𝑦3, 𝑦1, 𝑦2, 𝑥1, 𝑥2

≻4 = 𝑦1, 𝑦3, 𝑦2, 𝑥1, 𝑥2 ≻5 = 𝑦2, 𝑦1, 𝑦3, 𝑥1, 𝑥2 ≻6 = 𝑦3, 𝑦2, 𝑦1, 𝑥1, 𝑥2

Moreover, let 𝑅 denote the profile given by 𝑅(≻𝑖 ) = 1
6 for all 𝑖 ∈ {1, . . . , 6}. uPJR requires for this

profile that the output ranking ▷ agrees in at least ⌊ 1
6 ·

(5
2
)
⌋ = 1 pair with every ranking ≻𝑖 . While

counterintuitive, this means that the ranking ▷ = 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦3 satisfies uPJR as all input rankings
agree that 𝑥1 ≻ 𝑥2. However, this ranking is not rank-priceable: no ranking is willing to pay for 𝑥2,
so the input rankings can pay at most 4 + 2 + 1 = 7 for 𝑥1, 𝑦1, and 𝑦2. Since the total budget of our
rankings is

(5
2
)
= 10, a budget of 3 is remaining, thus showing that ▷ is not rank-priceable.
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Finally, we will introduce the Proportional Sequential Borda rule (PSB). On a high level, the idea of
this rule is to repeatedly choose the candidate maximizing the Borda score, update the weights of the
input rankings, and delete the Borda winner from the profile. To make this more formal, we assume
for every step 𝑖 ∈ {1, . . . ,𝑚} of PSB that each ranking ≻ has a budget 𝑏𝑖 (≻) ∈ R≥0 and that there is
a set of remaining candidates 𝑋𝑖 . In the first round, it holds that 𝑋1 = 𝐶 and 𝑏1 (≻) = 𝑅(≻) ·

(
𝑚
2
)

for all ≻ ∈ R, where 𝑅 denotes the input profile. Now, in each round 𝑖 , we choose the candidate
𝑥∗ that maximizes the Borda score (or utilitarian welfare) 𝑈 (𝑏𝑖 , 𝑥, 𝑋𝑖 ) =

∑
≻∈R 𝑏𝑖 (≻) · 𝑢 (≻, 𝑥, 𝑋𝑖 )

among all candidates 𝑥𝑖 . Next, we place this candidate at the 𝑖-th position of the output ranking and
remove it from the set of available candidates (i.e., 𝑋𝑖+1 = 𝑋𝑖 \ {𝑥∗}). Furthermore, we assume that
the cost of the 𝑖-th candidate is𝑚 − 𝑖 and, if possible, each ranking will pay a share of this cost that
is proportional to its contribution to the Borda score. More formally, each ranking ≻ will pay either
(𝑚−𝑖 ) ·𝑢 (≻,𝑥∗,𝑋𝑖 ) ·𝑏𝑖 (≻)

𝑈 (𝑏𝑖 ,𝑥∗,𝑋𝑖 ) or its remaining budget 𝑏𝑖 (≻) if the proportional contribution exceeds 𝑏𝑖 (≻).
Hence, we set 𝑏𝑖+1 (≻) = 𝑏𝑖 (≻) − min( (𝑚−𝑖 ) ·𝑢 (≻,𝑥∗,𝑋𝑖 ) ·𝑏𝑖 (≻)

𝑈 (𝑏𝑖 ,𝑥∗,𝑋𝑖 ) , 𝑏𝑖 (≻)) for each ranking ≻ ∈ R. After
defining 𝑋𝑖+1 and the budgets 𝑏𝑖+1 (≻), PSB continues with the next round until all candidates are
placed in the output ranking. We will next consider an example to illustrate how the Proportional
Sequential Borda rule works.

Example 2 (The Proportional Sequential Borda rule). Let≻1= 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 and≻2= 𝑥4, 𝑥5, 𝑥1, 𝑥3, 𝑥2
denote two rankings and let 𝑅 be the profile given by 𝑅(≻1) = 0.6 and 𝑅(≻2) = 0.4. For this profile,
PSB will choose the ranking ▷ = 𝑥1, 𝑥4, 𝑥2, 𝑥5, 𝑥3, which is witnessed by the following sequence of
budgets and profiles.

6 4
𝑥1 𝑥4

𝑥2 𝑥5

𝑥3 𝑥1

𝑥4 𝑥3

𝑥5 𝑥2

=⇒

3 3
𝑥2 𝑥4

𝑥3 𝑥5

𝑥4 𝑥3

𝑥5 𝑥2

=⇒

9
4

3
4

𝑥2 𝑥5

𝑥3 𝑥3

𝑥5 𝑥2

=⇒

1
4

3
4

𝑥3 𝑥5

𝑥5 𝑥3

On the left, we show the initial profile 𝑅, where the rankings are weighed by the budgets
𝑏1 (≻1) = 𝑅(≻1) ·

(5
2
)
= 6 and 𝑏1 (≻2) = 𝑅(≻2) ·

(5
2
)
= 4. Candidate 𝑥1 maximizes the Borda score in

this profile as 𝑈 (𝑏1, 𝑥1, {𝑥1, . . . , 𝑥5}) = 6 · 4 + 4 · 2 = 32. Consequently, ≻1 pays 4
32 · 6 · 4 = 3 and

≻2 pays 4
32 · 4 · 2 = 1, which means that the new budgets are 𝑏2 (≻1) = 𝑏2 (≻2) = 3. We moreover

remove 𝑥1 from the profile as 𝑋2 = 𝐶 \ {𝑥1}. In the second step, 𝑥4 maximizes the total Borda score
with𝑈 (𝑏2, 𝑥4, {𝑥2, . . . , 𝑥5}) = 12, so ≻1 pays 3

12 · 3 · 1 = 3
4 and ≻2 pays 3

12 · 3 · 3 = 9
4 . Consequently,

the new budgets are given by 𝑏3 (≻1) = 9
4 and 𝑏3 (≻2) = 3

4 and 𝑥4 is removed. In the third step, 𝑥2
maximizes the total Borda score with𝑈 (𝑏3, 𝑥2, {𝑥2, 𝑥3, 𝑥5}) = 9

2 and ≻1 pays the total cost of 2 since
𝑢 (≻2, 𝑥2, {𝑥2, 𝑥3, 𝑥5}) = 0. Hence, the budgets in the fourth step are 𝑏4 (≻1) = 1

4 and 𝑏4 (≻2) = 3
4 .

Finally, PSB now picks 𝑥5 and ≻2 will pay its remaining budget of 3
4 .

We note that the total leftover budget in Example 2 is only 1
4 , which implies that PSB is rank-

priceable in this example. We will next show that this holds in general, i.e., the Proportional
Sequential Borda rule satisfies rank-priceability and therefore also uPJR.

Theorem 1. The Proportional Sequential Borda rule satisfies rank-priceability.

Proof. Fix a profile 𝑅 and let ▷ = 𝑥1, . . . , 𝑥𝑚 be the ranking chosen by PSB. Moreover, we let
𝑏𝑖 (≻) denote the budgets used during the computation of PSB. We will show that the payment
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scheme 𝜋 defined by

𝜋 (≻, 𝑥𝑖 ) = 𝑏𝑖 (≻) − 𝑏𝑖+1 (≻) = min
(
(𝑚 − 𝑖) · 𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ) · 𝑏𝑖 (≻)

𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 )
, 𝑏𝑖 (≻)

)
for all 𝑖 ∈ {1, . . . ,𝑚 − 1} and all ≻ ∈ R satisfies the conditions of rank-priceability.

Condition (1): Fix a step 𝑖 ∈ {1, . . . ,𝑚 − 1} and a ranking ≻ with 𝑏𝑖 (≻) > 0. It holds that
𝑈 (𝑏𝑖 , 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) ≥ (𝑚 − 𝑖)𝑏𝑖 (≻) because 𝑥𝑖 maximizes the Borda score and (𝑚 − 𝑖)𝑏𝑖 (≻) is a
lower bound for the Borda score of the top-ranked candidate of ≻. Hence, we derive the following
inequality, which shows Condition (1).

𝜋 (≻, 𝑥𝑖 ) ≤
(𝑚 − 𝑖)𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )𝑏𝑖 (≻)

𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 )
≤ (𝑚 − 𝑖)𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )𝑏𝑖 (≻)

(𝑚 − 𝑖)𝑏𝑖 (≻)
= 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚})

Condition (2): For this condition, we note for all ≻ ∈ R that𝑏1 (≻) = 𝑅(≻) ·
(
𝑚
2
)
and that𝑏𝑚 (≻) ≥ 0

because 𝜋 (≻, 𝑥𝑖 ) ≤ 𝑏𝑖 (≻) for all 𝑖 ∈ {1, . . . ,𝑚 − 1}. Hence, ∑𝑚
𝑖=1 𝜋 (≻, 𝑥𝑖 ) ≤ 𝑅(≻) ·

(
𝑚
2
)
for all ≻ ∈ R

and Condition (2) of rank-priceability holds.

Condition (3): Condition (3) is satisfied because it holds for every 𝑖 ∈ {1, . . . ,𝑚 − 1} that∑︁
≻∈R

𝜋 (≻, 𝑥𝑖 ) ≤
∑︁
≻∈R

(𝑚 − 𝑖) · 𝑢 (≻, 𝑥, 𝑋𝑖 ) · 𝑏𝑖 (≻)
𝑈 (𝑏𝑖 , 𝑥, 𝑋𝑖 )

=𝑚 − 1.

Condition (4): For Condition (4), we will first show that
∑

≻∈R 𝑏𝑖 (≻) =
(𝑚−𝑖 ) (𝑚−𝑖+1)

2 for all
𝑖 ≥ 𝑚 − 2. Clearly, this is true if 𝑖 = 1 because

∑
≻∈R 𝑏1 (≻) =

(
𝑚
2
) ∑

≻∈R 𝑅(≻) =
(𝑚−1) (𝑚)

2 by
definition. Next, we inductively assume that

∑
≻∈R 𝑏𝑖 (≻) = (𝑚−𝑖 ) (𝑚−𝑖+1)

2 for some 𝑖 ∈ {1, . . . ,𝑚−3}
and we let 𝑋𝑖 = {𝑥𝑖 , . . . , 𝑥𝑚}. Since there are𝑚 − 𝑖 + 1 candidates in 𝑋𝑖 , it follows that∑︁

𝑥∈𝑋𝑖

∑︁
≻∈R

𝑏𝑖 (≻)𝑢 (≻, 𝑥, 𝑋𝑖 ) =
∑︁
≻∈R

𝑏𝑖 (≻)
𝑚−𝑖∑︁
𝑗=0

𝑗 =

(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2

)2
.

Since candidate𝑥𝑖 maximizes the Borda scorewith respect to𝑏𝑖 and𝑋𝑖 , we conclude that𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 ) ≥
1

𝑚−𝑖+1
∑

𝑥∈𝑋𝑖
𝑈 (𝑏𝑖 , 𝑥, 𝑋𝑖 ) =

(𝑚−𝑖 )2 (𝑚−𝑖+1)
4 . This implies for all ≻ ∈ R that (𝑚−𝑖 )𝑢 (≻,𝑥,𝑋𝑖 )𝑏𝑖 (≻)

𝑈 (𝑏𝑖 ,𝑥𝑖 ,𝑋𝑖 ) ≤
4𝑢 (≻,𝑥𝑖 ,𝑋𝑖 )𝑏𝑖 (≻)
(𝑚−𝑖 ) (𝑚−𝑖+1) . Finally, it holds that𝑚 − 𝑖 + 1 ≥ 4 as𝑚 − 𝑖 ≥ 3 and 𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ) ≤ 𝑚 − 𝑖 by definition.

We thus infer that (𝑚−𝑖 )𝑢 (≻,𝑥,𝑋𝑖 )𝑏𝑖 (≻)
𝑈 (𝑏𝑖 ,𝑥𝑖 ,𝑋𝑖 ) ≤ 𝑏𝑖 (≻) for all ≻ ∈ R. Since

∑
≻∈R

(𝑚−𝑖 )𝑢 (≻,𝑥,𝑋𝑖 )𝑏𝑖 (≻)
𝑈 (𝑏𝑖 ,𝑥𝑖 ,𝑋𝑖 ) =𝑚 − 𝑖 ,

the total budget in round 𝑖 + 1 is∑︁
≻∈R

𝑏𝑖+1 (≻) =
∑︁
≻∈R

𝑏𝑖 (≻) −
(𝑚 − 𝑖) · 𝑢 (≻, 𝑥, 𝑋𝑖 ) · 𝑏𝑖 (≻)

𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 )

=
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− (𝑚 − 𝑖)

=
(𝑚 − 𝑖) (𝑚 − 𝑖 − 1)

2
.

For 𝑖 =𝑚−2, this reasoning shows that
∑

≻∈R 𝑏𝑖 (≻) = (𝑚−𝑖 ) (𝑚−𝑖+1)
2 = 3. Furthermore, if 𝑖 =𝑚−2,

we are left with the candidates 𝑋𝑚−2 = {𝑥𝑚−2, 𝑥𝑚−1, 𝑥𝑚} and we know that 𝑥𝑚−2 maximizes the
Borda score with respect to 𝑏𝑚−2. Now, if

min( 2𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2)𝑏𝑚−2 (≻)
𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)

, 𝑏𝑚−2 (≻)) =
2𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2)𝑏𝑚−2 (≻)

𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)
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for all ≻ ∈ R, our previous reasoning shows that we decrease the total budget by 2. Next, assume
that

min( 2𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2)𝑏𝑚−2 (≻)
𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)

, 𝑏𝑚−2 (≻)) = 𝑏𝑚−2 (≻)

for some ranking ≻. In this case, we first note that candidate 𝑥𝑚−2 has a Borda score of at least
2·2·3

4 = 3. Hence, 2𝑢 (≻,𝑥𝑚−2,𝑋𝑚−2 )𝑏𝑚−2 (≻)
𝑈 (𝑏𝑚−2,𝑥𝑚−2,𝑋𝑚−2 ) ≤ 2

3𝑏𝑚−2 (≻) for all ≻ ∈ R with 𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2) ≤ 1. Con-
sequently, min( 2𝑢 (≻,𝑥𝑚−2,𝑋𝑚−2 )𝑏𝑚−2 (≻)

𝑈 (𝑏𝑚−2,𝑥𝑚−2,𝑋𝑚−2 ) , 𝑏𝑚−2 (≻)) = 𝑏𝑚−2 (≻) is only possible if𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2) = 2.
Now, let 𝑌 denote the set of rankings such that ≻∈ 𝑌 if and only if 𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2) = 2. By our
analysis so far, it holds that∑︁

≻∈R
min

(
2𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2)𝑏𝑚−2 (≻)

𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)
, 𝑏𝑚−2 (≻)

)
=

∑︁
≻∈R

2𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2)𝑏𝑚−2 (≻)
𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)

−
∑︁
≻∈𝑌

(
2𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2)𝑏𝑚−2 (≻)

𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)
− 𝑏𝑚−2 (≻)

)
= 2 −

(
4

𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)
− 1

) ∑︁
≻∈𝑌

𝑏𝑚−2 (≻) .

By the assumption that min( 2𝑢 (≻,𝑥𝑚−2,𝑋𝑚−2 ) ·𝑏𝑚−2 (≻)
𝑈 (𝑏𝑚−2,𝑥𝑚−2,𝑋𝑚−2 ) , 𝑏𝑚−2 (≻)) = 𝑏𝑚−2 (≻) for ≻ ∈ 𝑌 , we derive

that ( 4
𝑈 (𝑏𝑚−2,𝑥𝑚−2,𝑋𝑚−2 ) −1) ≥ 0. Hence, the above term is minimized if

∑
≻∈𝑌 𝑏𝑚−2 (≻) is maximized.

Because
∑

≻∈𝑌 𝑏𝑚−2 (≻) ≤ 𝑈 (𝑏𝑚−2,𝑥𝑚−2,𝑋𝑚−2 )
2 and𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2) ≥ 3, we get that∑︁

≻∈R
min

(
2𝑢 (≻, 𝑥𝑚−2, 𝑋𝑚−2)𝑏𝑚−2 (≻)

𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)
, 𝑏𝑚−2 (≻)

)
≥ 2 − ( 4

𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)
− 1) · 𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)

2

≥ 2 − 2 + 𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2)
2

≥ 3
2
.

In summary, we conclude that the total budget decreases by at least 3
2 , so the total remaining

budget for the last round is at most 1.5. In this round, only the candidates 𝑋𝑚−1 = {𝑥𝑚−1, 𝑥𝑚}
are left, so it holds that 𝑢 (≻, 𝑥𝑚−1, 𝑋𝑚−1) ∈ {0, 1}. If 𝑈 (𝑏𝑚−1, 𝑥𝑚−1, 𝑋𝑚−1) ≥ 1, this means that
min(𝑢 (≻,𝑥𝑚−1,𝑋𝑚−1 )𝑏𝑚−1 (≻)

𝑈 (𝑏𝑚−1,𝑥𝑚−1,𝑋𝑚−1 ) , 𝑏𝑚−1 (≻)) =
𝑢 (≻,𝑥𝑚−1,𝑋𝑚−1 )𝑏𝑚−1 (≻)

𝑈 (𝑏𝑚−1,𝑥𝑚−1,𝑋𝑚−1 ) and we decrease the total budget
by at least 1. Hence, the total remaining budget is at most 0.5, which proves Condition (4)
of rank-priceability in this case. By contrast, if 𝑈 (𝑏𝑚−1, 𝑥𝑚−1, 𝑋𝑚−1) < 1, each ranking with
𝑢 (≻, 𝑥𝑚−1, 𝑋𝑚−1) = 1 will contribute its complete budget. Since 𝑥𝑚−1 maximizes the Borda score,
we derive that

∑
≻∈R : 𝑥𝑚−1≻𝑥𝑚 𝑏𝑚−1 (≻) ≥

∑
≻∈R : 𝑥𝑚≻𝑥𝑚−1 𝑏𝑚−1 (≻), so the total remaining budget is

reduced by at least half. So, the total remaining budget is at most 0.75 and Condition (4) holds. □

As a second fairness property, we will also analyze the average utility that PSB guarantees
to subprofiles, as a function of the size of the subprofile. Intuitively, a proportional SWF should
guarantee to each subprofile 𝑆 a fraction of the total utility

(
𝑚
2
)
that is at least linear in |𝑆 |. We

show that PSB meets this condition as every subprofile 𝑆 is guaranteed an average utility of at least
|𝑆 |
4 − 3

16 by our SWF. We note that Lederer et al. [31] have computed an analogous bound for the
Squared Kemeny rule, which is, however, sub-linear and trivial if |𝑆 | ≤ 1

4 . The proof of this result
can be found in Appendix B.
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Theorem 2. Let 𝑅 be a profile on 𝑚 candidates and ▷ = PSB(𝑅) be the ranking chosen by the
Proportional Sequential Borda rule. It holds for every subprofile 𝑆 of 𝑅 that

1
|𝑆 |

∑︁
≻∈R

𝑆 (≻)𝑢 (≻,▷) ≥
(
𝑚

2

)
· |𝑆 |

4
− 3

16
.

4.2 The Ranked Method of Equal Shares
We will next discuss our first variant of the Proportional Sequential Borda rule, which aims at
finding more utilitarian rankings while still satisfying uPJR. Specifically, we will introduce the
Ranked Method of Equal Shares (RMES) which simultaneously satisfies uPJR and guarantees to pick
the first ⌊𝑚4 ⌋ candidates in a highly utilitarian way.

Since the Ranked Method of Equal Shares is closely related to the Method of Equal Shares [36, 37],
we will outline this method first. Just as PSB, the Method of Equal Shares uniformly distributes
a budget to the voters who use it to buy costly candidates. In more detail, let 𝑏𝑖 ( 𝑗) denote the
remaining budget of voter 𝑗 in the 𝑖-th round, 𝑢 ( 𝑗, 𝑥) the utility of voter 𝑗 for candidate 𝑥 , and
𝑐 (𝑥) the cost of candidate 𝑥 . The Method of Equal Shares chooses in the 𝑖-th round the candidate
𝑥∗ that minimizes the value 𝜌 for which

∑
𝑗∈𝑁 min(𝜌 · 𝑢 (𝑥∗, 𝑗), 𝑏𝑖 ( 𝑗)) = 𝑐 (𝑥∗). Furthermore, after

buying candidate 𝑥∗, the budget of each voter is decreased by his contribution to the cost of 𝑥∗, i.e.,
𝑏𝑖+1 ( 𝑗) = 𝑏𝑖 ( 𝑗) − min(𝜌 · 𝑢 (𝑥∗, 𝑗), 𝑏𝑖 ( 𝑗)). Based on the ideas of the last section, this approach can
be easily extended to rank aggregation. Specifically, we will assume that the cost of each candidate
in the 𝑖-th round is𝑚 − 𝑖 . Then, the Method of Equal Shares chooses in the 𝑖-th round the candidate
𝑥𝑖 that minimizes the price 𝜌 such that

∑
≻∈R min(𝜌 · 𝑏1 (≻) · 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}), 𝑏𝑖 (≻)) =𝑚 − 𝑖 .

However, it turns out that this method fails rank-priceability as a ranking may pay more for a
candidate than the utility it obtains.4 We will thus include the term 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) as a third
argument of the minimum.
We now formally define the Ranked Method of Equal Shares (RMES), which iteratively selects

candidates based on the budgets 𝑏𝑖 (≻) of the input rankings and the set of remaining candidates
𝑋𝑖 . As for PSB, it holds in the first round that 𝑏1 (≻) = 𝑅(≻) ·

(
𝑚
2
)
and 𝑋1 = 𝐶 . Now, in each round

𝑖 ∈ {1, . . . ,𝑚 − 2}, RMES identifies the candidate 𝑥𝑖 ∈ 𝑋𝑖 that minimizes the value 𝜌𝑖 such that∑︁
≻∈R

min(𝜌𝑖 · 𝑏1 (≻) · 𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )) =𝑚 − 𝑖 .

Then, we place this candidate at the 𝑖-th position of the output ranking, remove𝑥𝑖 from the active can-
didates, and reduce the budget of every ranking according to its contribution to the cost of 𝑥𝑖 . More
formally, we set𝑋𝑖+1 = 𝑋𝑖 \{𝑥𝑖 } and𝑏𝑖+1 (≻) = 𝑏𝑖 (≻)−min(𝜌𝑖 ·𝑏1 (≻) ·𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ))
for all ≻. After this, we proceed with the next round. Finally, since this approach is only guaranteed
to work when |𝑋𝑖 | ≥ 3, we decide the order over the last two candidates by majority voting with
respect to the remaining budgets: if 𝑥 and 𝑦 are the last active candidates, we place 𝑥 ahead of
𝑦 at the 𝑚 − 1-th position of the output ranking if

∑
≻∈R : 𝑥≻𝑦 𝑏𝑚−1 (≻) ≥ ∑

≻∈R : 𝑦≻𝑥 𝑏𝑚−1 (≻).
Otherwise, we put 𝑦 at the𝑚 − 1-th position. As usual, ties can be broken arbitrarily.

4For an example, consider the rankings ≻1= 𝑥1, . . . , 𝑥6 and ≻2= 𝑥6, . . . , 𝑥1 and let 𝑅 be the profile defined by 𝑅 (≻1 ) =
47
60 = 11.75

15 and 𝑅 (≻2 ) = 13
60 = 3.25

15 . Since
(6
2
)
= 15, the initial budgets of ≻1 and ≻2 are 𝑏1 (≻1 ) = 𝑅 (≻1 ) · 15 = 11.75 and

𝑏1 (≻2 ) = 𝑅 (≻2 ) · 15 = 3.25. In the first two rounds, it is easy to verify that RMES chooses 𝑥1 and 𝑥2 and that ≻1 will pay
the full cost of these candidates. Hence, in the third step, we have that 𝑏3 (≻1 ) = 11.75 − 5 − 4 = 2.75 and 𝑏3 (≻2 ) = 3.25.
This means that 𝑥3 is no longer feasible because ≻1 has not enough budget left to pay for this candidate and ≻2 gains
no utility from 𝑥3. If we do not include the utility 𝑢 (≻, 𝑥,𝑋𝑖 ) in the minimum for computing 𝜌 , we would thus buy 𝑥4
for a cost per utility ratio of 𝜌 = 3

2·11.75+1·3.25 = 12
107 . In turn, we infer that ≻1 pays 12

107 · 47
4 · 2 = 282

107 ≈ 2.64 and ≻2 pays
12
107 · 13

4 · 1 = 39
107 ≈ 0.36. However, this means that ≻2 pays more than its obtained utility in this step, thus violating

rank-priceability.
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Example 3 (The RankedMethod of Equal Shares). Let ≻1 = 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 and ≻2 = 𝑥4, 𝑥5, 𝑥1, 𝑥3, 𝑥2
and consider the same profile 𝑅 as in Example 2, i.e., 𝑅(≻1) = 0.6 and 𝑅(≻2) = 0.4. If the tie-breaking
favors candidates with smaller indices, RMES chooses the ranking ▷ = 𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥3 for this profile,
as verified by the following computations.

6 (6) 4 (4)
𝑥1 𝑥4

𝑥2 𝑥5

𝑥3 𝑥1

𝑥4 𝑥3

𝑥5 𝑥2

=⇒

6 (3) 4 (3)
𝑥2 𝑥4

𝑥3 𝑥5

𝑥4 𝑥3

𝑥5 𝑥2

=⇒

6 (0) 4 (3)
𝑥3 𝑥4

𝑥4 𝑥5

𝑥5 𝑥3

=⇒
6 (0) 4 (1)
𝑥3 𝑥5

𝑥5 𝑥3

Here, we show the input rankings restricted to the available candidates and weighted by their
initial budget 𝑏1 (≻). In brackets, we also show the remaining budget in each round. Analogous to
PSB, RMES picks in the first step 𝑥1 for a price 𝜌1 =

1
8 , so ≻1 pays 1

8 · 4 · 6 = 3 and ≻2 pays 1
8 · 2 · 4 = 1.

Hence, the new budgets are 𝑏2 (≻1) = 3 and 𝑏2 (≻2) = 3. In the second step, both 𝑥2 and 𝑥4 can be
bought for a price of 𝜌 = 1

6 = 3
18 . Because we assume that the tie-breaking favors 𝑥2 to 𝑥4, we pick

𝑥2 next. Consequently, ≻1 pays 1
6 · 3 · 6 = 3 and ≻2 pays 1

6 · 0 · 4 = 0, which means that 𝑏3 (≻1) = 0
and 𝑏3 (≻2) = 3. From here on, RMES picks the candidates according to ≻2 as ≻1 has no budget left.

We note that in this example, there is always a candidate 𝑥𝑖 that can be bought for a finite price.
We next show that this observation holds in general as RMES is well-defined. Moreover, we will also
prove that RMES satisfies rank-priceability and thus uPJR.

Theorem 3. RMES is well-defined and satisfies rank-priceability.

While Theorem 3 establishes that RMES is a proportional SWF, we will next show that it is still
rather utilitarian. Specifically, we will prove that the first ⌊𝑚4 ⌋ candidates of this rule are chosen
only based on the Borda scores with respect to the initial weights. Put differently, RMES agrees for
roughly the first quarter of the candidates with the highly utilitarian ranking obtained by repeatedly
placing the Borda winner in the next available position of the output ranking and removing it from
the input profile. Moreover, these candidates determine roughly 7

16 of all pairwise comparisons,
thus showing that a significant portion of the total utility is assigned in a utilitarian way.

Proposition 4. Fix a profile 𝑅 on𝑚 candidates and let ▷ = 𝑥1, . . . , 𝑥𝑚 denote the ranking chosen by
RMES. It holds for all 𝑖 ∈ {1, . . . , ⌊𝑚4 ⌋} that 𝑥𝑖 = arg max𝑥∈{𝑥𝑖 ,...,𝑥𝑚 } 𝑈 (𝑏1, 𝑥, {𝑥𝑖 , . . . , 𝑥𝑚}).

As our last result on RMES and analogous to Theorem 2, we will present a lower bound on the
average utility of subprofiles ensured by RMES. Interestingly, we will show that Proposition 4 implies
a slightly better guarantee for large subprofiles compared to PSB because, roughly, this result entails
a lower cost per utility ratio in the first steps.

Theorem 4. Let 𝑅 be a profile on𝑚 ≥ 4 candidates, ▷ = RMES(𝑅), and define 𝜉 =
(𝑚−⌊𝑚4 ⌋

2
)
. It holds

for every subprofile 𝑆 of 𝑅 that

1
|𝑆 |

∑︁
≻∈R

𝑆 (≻)𝑢 (≻,▷) ≥
{(

𝑚
2
)
· |𝑆 |

4 − 1
8 if

(
𝑚
2
)
|𝑆 | − 0.5 ≤ 𝜉

1
2 ·

(
𝑚
2
)
· (1 − 𝜉

(𝑚2 ) |𝑆 |
) + 𝜉+1

4 · 𝜉

(𝑚2 ) |𝑆 |
− 1

4 |𝑆 | if
(
𝑚
2
)
|𝑆 | − 0.5 > 𝜉 .

4.3 Pair-Priceability and the Flow-adjusting Borda Rule
As our second variant of PSB, we will discuss the Flow-adjusting Borda rule (FB), which satisfies
sPJR. To motivate this rule, we first show that PSB and RMES fail this stronger fairness condition.
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Example 4 (PSB and RMES fail PJR). Wewill consider a profilewith 25 candidates {𝑦, 𝑥1, . . . , 𝑥4, 𝑧1, . . . , 𝑧20}
and the following 8 rankings:

≻1 = 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦, 𝑧1, . . . , 𝑧20 ≻2 = 𝑥2, 𝑥3, 𝑥4, 𝑥1, 𝑦, 𝑧1, . . . , 𝑧20

≻3 = 𝑥3, 𝑥4, 𝑥1, 𝑥2, 𝑦, 𝑧1, . . . , 𝑧20 ≻4 = 𝑥4, 𝑥1, 𝑥2, 𝑥3, 𝑦, 𝑧1, . . . , 𝑧20

≻5 = 𝑦, 𝑧20, . . . , 𝑧1, 𝑥4, 𝑥3, 𝑥2, 𝑥1 ≻6 = 𝑦, 𝑧20, . . . , 𝑧1, 𝑥3, 𝑥2, 𝑥1, 𝑥4

≻7 = 𝑦, 𝑧20, . . . , 𝑧1, 𝑥2, 𝑥1, 𝑥4, 𝑥3 ≻8 = 𝑦, 𝑧20, . . . , 𝑧1, 𝑥1, 𝑥4, 𝑥3, 𝑥2

Less formally, our ranking can be partitioned into 2 groups: the rankings ≻1, . . . , ≻4 rank all 𝑥𝑖
ahead of 𝑦 ahead of all 𝑧 𝑗 , order the candidates 𝑧 𝑗 in increasing order of their indices, and the
candidates 𝑥𝑖 are arranged cyclic within these rankings. Conversely, the rankings ≻5, . . . , ≻8 rank
𝑦 ahead of all 𝑧 𝑗 ahead of all 𝑥𝑖 , rank the candidates 𝑧 𝑗 in decreasing order of their indices, and
the candidates 𝑥𝑖 are also arranged in a cycle within these rankings. We next note that

(25
2
)
= 300

and we define 𝑅 as the ranking such that 𝑅(≻𝑖 ) = 67.5
300 for all 𝑖 ∈ {1, . . . , 4} and 𝑅(≻𝑖 ) = 7.5

300 for
all 𝑖 ∈ {5, . . . , 8}. In particular, this means that PJR requires that the output ranking ▷ chooses
67.5 · 4 = 270 pairwise comparisons from the union of ≻1, . . . , ≻4. However, we have shown with
the help of a computer that, under suitable tie-breaking in the first 5 steps, PSB and RMES choose
the following rankings:

PSB(𝑅) = ▷PSB = 𝑦, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑧1, . . . , 𝑧10, 𝑧20, 𝑧11, 𝑧19, 𝑧18, 𝑧12, 𝑧13, 𝑧17, 𝑧16, 𝑧14, 𝑧15

RMES(𝑅)) = ▷RMES = 𝑦, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑧1, . . . , 𝑧11, 𝑧19, 𝑧20, . . . , 𝑧12.

It can be verified that both ▷PSB and ▷RMES only agree with 269 pairwise comparisons in the
union of ≻1, . . . , ≻4, thus witnessing a violation of PJR. While the full computations for these output
rankings is tedious, we note that for both rules, the central "mistake" happens in the first round.
In this round, each candidate 𝑐 ∈ {𝑥1, . . . , 𝑥4, 𝑦} has a Borda score of 𝑈 (𝑏1, 𝑐,𝐶) = 6120 (where
𝑏1 (≻) = 𝑅(≻) · 300). Hence, under suitable tie-breaking, both rules pick 𝑦 first. Moreover, for
both rules, each ranking ≻𝑖 with 𝑖 ∈ {1, . . . , 4} pays 24

6120 · 20 · 67.5 = 90
17 and the rankings ≻𝑖 with

𝑖 ∈ {5, . . . , 8} each pay 24
6120 · 24 · 7.5 = 12

17 . However, this means that the rankings ≻1, . . . , ≻4 pay in
total 360

17 ≈ 21.18, even though each of these rankings only obtains a utility of 20 from placing 𝑦
first. Put differently, these rankings pay as a group more than their obtained utility, so they cannot
afford enough further candidates to get the utility they deserve.

We note that the problem in Example 4 can also be seen as a flaw in the definition of rank-
priceability: this axiom only precludes that individual rankings spend more on a candidate than
the utility they obtain, but this guarantee does not extend to groups. To design SWFs that satisfy
sPJR, we will therefore present a refined version of rank-priceability called pair-priceability. The
idea of this axiom is to view the output ranking ▷ as the set of pairs 𝐴(▷) = {(𝑥,𝑦) ∈ 𝐶2 : 𝑥 ▷ 𝑦}
and that every pair of this set needs to be bought for a price of 1 by the input rankings.

Definition 5 (Pair-Priceability). A ranking ▷ = 𝑥1, . . . , 𝑥𝑚 is pair-priceable for a profile 𝑅 if there
is a payment function 𝜋 : R ×𝐴(▷) → [0, 1] such that

(1) 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) ≤ 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , 𝑥 𝑗 }) for all ≻ ∈ R and (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐴(▷).
(2)

∑
(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐴(▷) 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) ≤

(
𝑚
2
)
· 𝑅(≻) for all ≻ ∈ R.

(3)
∑

≻∈R 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) ≤ 1 for all (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐴(▷).
(4)

∑
≻∈R

∑
(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐴(▷) 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) >

(
𝑚
2
)
− 1.

Pair-priceability differs from rank-priceability only in that Conditions (1) and (3) are formulated
for pairs of candidates rather than for candidates. For instance, Condition (1) now states that a
ranking ≻ is only allowed to pay for a pair of candidates (𝑥𝑖 , 𝑥 𝑗 ) if 𝑥𝑖 ≻ 𝑥 𝑗 . Hence, pair-priceability
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requires a more fine-grained payment scheme than rank-priceability. Further, we note that rank-
priceability rules out the problem observed in Example 4: the rankings ≻1, . . . , ≻4 in this example
can pay at most 20 for the pairwise comparisons including 𝑦 because they all rank 𝑦 only ahead
of 𝑧1, . . . , 𝑧20. More generally, we will next show that pair-priceability implies sPJR and that pair-
priceable rankings are guaranteed to exist. Curiously, the proof that pair-priceable rankings exist
is driven by the ranking-matching lemma, one of the central tools in the analysis of the metric
distortion of voting rules [21, 23, 24].

Proposition 5. The following claims are true:

(1) If a ranking is pair-priceable for a profile, it also satisfies sPJR.
(2) For every profile, there is a pair-priceable ranking.

Since the proof of Claim (2) of Proposition 5 is constructive, it directly yields an SWF that satisfies
rank-priceability. In particular, it is possible to define SWFs satisfying pair-priceability by adapting
voting rules designed in the context of metric distortion to rank aggregation. For instance, one can
combine the SimulatenousVeto rule of Kizilkaya and Kempe [24] with a budgeting approach to
derive an SWF that satisfies pair-priceability and thus sPJR. However, while we find this direction
interesting, we leave the analysis of such SWFs for future work. Instead, we will suggest another
method based on Borda scores that is pair-priceable.
Specifically, we will now discuss the Flow-adjusting Borda rule (FB). The idea of this rule is

similar to PSB: in each round, we will add the Borda winner with respect to the current budgets
to the output ranking, decrease the budgets of the rankings, and remove the Borda winner from
consideration. To make this more formal, we denote again by 𝑏𝑖 (≻) the budget of ranking ≻ in the
𝑖-th round and by 𝑋𝑖 the remaining candidates. Just as for PSB, we have that 𝑏1 (≻) = 𝑅(≻) ·

(
𝑚
2
)

and 𝑋1 = 𝐶 , where 𝑅 is the input profile. For each round 𝑖 , we will then choose the candidate
𝑥∗ = arg max𝑥∈𝑋𝑖

𝑈 (𝑏𝑖 , 𝑥, 𝑋𝑖 ) maximizing the Borda score, place it at the 𝑖-th position of the output
ranking, and set 𝑋𝑖+1 = 𝑋𝑖 \ {𝑥∗}. However, in contrast to PSB, FB determines the payments of the
rankings based on a maximum flow in the following flow network 𝐺𝑥∗ = (𝑉 , 𝐸, 𝑐).5

• The set of vertices 𝑉 contains a source 𝑠 , a ranking vertex 𝑣≻ for every ≻ ∈ R, a candidate
vertex 𝑣𝑦 for every 𝑦 ∈ 𝑋𝑖 \ {𝑥∗}, and a sink 𝑡 .

• For every ranking ≻, there is an edge from the source 𝑠 to the ranking vertex 𝑣≻ with a
capacity equal to the remaining budget of ≻, i.e., 𝑐 (𝑠, 𝑣≻) = 𝑏𝑖 (≻).

• For every ranking ≻ and every candidate 𝑦 ∈ 𝑋𝑖 \ {𝑥∗} with 𝑥∗ ≻ 𝑦, there is an edge from
𝑣≻ to 𝑣𝑦 with unbounded capacity.

• For every candidate 𝑦, there is an edge from the candidate vertex 𝑣𝑦 to the sink 𝑡 with
capacity 𝑐 (𝑣𝑦, 𝑡) = 1.

Now, let 𝑓 denote an arbitrary maximum flow in 𝐺𝑥∗ that optimizes the maximum cost per
utility ratio of an input ranking, i.e., that minimizes max≻∈R

𝑓 (𝑠,𝑣≻ )
𝑏𝑖 (≻)𝑢 (≻,𝑥∗,𝑋𝑖 ) (where we assume for

simplicity that 0
0 = 0). After determining this flow, we set 𝑏𝑖+1 (≻) = 𝑏𝑖 (≻) − 𝑓 (𝑠, 𝑣≻) for every

ranking ≻ and proceed with the next round. By this definition, FB only augments PSB by using a
more sophisticated payment scheme. Even more, if possible, every ranking pays in FB the same

5We recall here some basics for the maximum flow problem. A flow network𝐺 = (𝑉 , 𝐸, 𝑐 ) is a capacitated directed graph
where 𝑐 : 𝐸 → R≥0 specifies the capacity of every edge and𝑉 contains two designated vertices 𝑠 and 𝑡 called source and
sink. A flow in such a network is a function 𝑓 : 𝐸 → R≥0 such that (i) 𝑓 (𝑒 ) ≤ 𝑐 (𝑒 ) for all 𝑒 ∈ 𝐸 (capacity constraint)
and (ii)

∑
(𝑢,𝑣) ∈𝐸 𝑓 (𝑢, 𝑣) = ∑

(𝑣,𝑤) ∈𝐸 𝑓 (𝑣, 𝑤 ) for all 𝑣 ∈ 𝑉 \ {𝑠, 𝑡 } (flow conservation). The value of a flow 𝑓 is the net
outflow of the source 𝑠 , i.e.,

∑
(𝑠,𝑣) ∈𝐸 𝑓 (𝑠, 𝑣) − ∑

(𝑣,𝑠 ) ∈𝐸 𝑓 (𝑣, 𝑠 ) . Finally, a maximum flow is a flow with maximum value.
To simplify notation, we will often write 𝑓 (𝑢, 𝑣) = 0 if (𝑢, 𝑣) ∉ 𝐸.
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𝑡
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3.5

1.5

1.5

1

1

1

1

Fig. 1. The flow network 𝐺𝑥1 used for the first step of FB for the profile 𝑅 shown in Example 5.

amount as in PSB because max≻∈R
𝑓 (𝑠,𝑣≻ )

𝑏𝑖 (≻)𝑢 (≻,𝑥∗,𝑋𝑖 ) is minimized if 𝑓 (𝑠, 𝑣≻) = 𝑣 (𝑓 )𝑏𝑖 (≻)𝑢 (≻,𝑥∗,𝑋𝑖 )
𝑈 (𝑏𝑖 ,𝑥∗,𝑋𝑖 ) for

all ≻ ∈ R (where 𝑣 (𝑓 ) denotes the value of 𝑓 ).

Example 5 (The Flow-adjusting Borda rule). We consider the following four rankings.

≻1 = 𝑥2, 𝑥3, 𝑥1, 𝑥4, 𝑥5 ≻2 = 𝑥3, 𝑥2, 𝑥1, 𝑥4, 𝑥5

≻3 = 𝑥1, 𝑥4, 𝑥5, 𝑥2, 𝑥3 ≻4 = 𝑥1, 𝑥4, 𝑥5, 𝑥3, 𝑥2

Moreover, let 𝑅 be the profile given by 𝑅(≻1) = 𝑅(≻2) = 7
20 and 𝑅(≻3) = 𝑅(≻4) = 3

20 . Assuming
that ties are broken in favor of candidates with smaller indices, FB chooses the ranking ▷ =

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 for this profile, whereas PSB chooses ▷ = 𝑥1, 𝑥2, 𝑥4, 𝑥3, 𝑥5. The computation for FB
can be verified based on the following sequence of profiles.

7
2

7
2

3
2

3
2

𝑥2 𝑥3 𝑥1 𝑥1

𝑥3 𝑥2 𝑥4 𝑥4

𝑥1 𝑥1 𝑥5 𝑥5

𝑥4 𝑥4 𝑥2 𝑥3

𝑥5 𝑥5 𝑥3 𝑥2

=⇒

5
2

5
2

1
2

1
2

𝑥2 𝑥3 𝑥4 𝑥4

𝑥3 𝑥2 𝑥5 𝑥5

𝑥4 𝑥4 𝑥2 𝑥2

𝑥5 𝑥5 𝑥3 𝑥3

=⇒

55
26

23
26

𝑥3 𝑥4

𝑥4 𝑥5

𝑥5 𝑥3

=⇒

3
26

13
26

𝑥4 𝑥4

𝑥5 𝑥5

We show in this graphic again the rankings restricted to the available candidates and weighted
by their budget in each round. Moreover, we collapsed in the third step the rankings ≻1 and ≻2
as well as ≻3 and ≻4 into single rankings. In the first round of FB, it holds for 𝑥 ∈ {𝑥1, 𝑥2, 𝑥3} that
𝑈 (𝑏1, 𝑥,𝐶) = 26. By our tie-breaking assumption, this means that 𝑥1 is chosen and we need to
identify a maximum flow in the network 𝐺𝑥1 shown in Figure 1. In this network, the rankings ≻1
and ≻2 together can pay at most 2 for 𝑥4 and 𝑥5 and the rankings ≻3 and ≻4 can pay 1 each for 𝑥1
and 𝑥2. Hence, the maximum flow has value 4 and it can be shown that the cost per utility ratio is
minimized if each ranking pays 1. Hence, the budgets in the second step are 𝑏2 (≻1) = 𝑏2 (≻2) = 5

2
and 𝑏2 (≻3) = 𝑏2 (≻4) = 1

2 . By contrast, in PSB, ≻1 and ≻2 each pay 4
26 · 2 · 7

2 = 28
26 , which is the main

reason for the different outcome. Starting from the second round on, FB behaves exactly like PSB,
because the payments made by PSB can be transformed into a maximum flow of the corresponding
network. We hence leave the verification of the remaining steps to the reader.

We will next show that FB is pair-priceable and thus satisfies sPJR. Moreover, we note that the
following statement holds regardless of the exact maximum flow chosen in the flow network 𝐺𝑥𝑖 ,
i.e., it is not necessary to minimize the cost per utility ratio.
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Theorem 5. The Flow-adjusting Borda rule is pair-priceable.

Lastly, we also examine the average utility that FB guarantees to subprofile. Specifically, we will
next show that FB gives the same guarantee on the average utility of subprofiles than PSB. For the
proof of the subsequent theorem, it is crucial that FB chooses the maximum flow that minimizes
the cost per utility ratio in every step.

Theorem 6. Let 𝑅 be a profile on 𝑚 candidates and ▷ = FB(𝑅) the ranking chosen by the Flow-
adjusting Borda rule. It holds for every subprofile 𝑆 of 𝑅 that

1
|𝑆 |

∑︁
≻∈R

𝑆 (≻)𝑢 (≻,▷) ≥
(
𝑚

2

)
· |𝑆 |

4
− 3

16
.

5 Conclusion
In this paper, we study the design of proportional social welfare functions (SWFs) by adapting
tools from approval-based committee voting and participatory budgeting to rank aggregation. In
more detail, our central fairness condition is called uPJR and requires that every input ranking with
weight 𝛼 should agree with at least ⌊𝛼

(
𝑚
2
)
⌋ pairwise comparisons of the output ranking. We first

show that the Squared Kemeny rule, which was suggested by Lederer et al. [31] to proportionally
aggregate input rankings, fails even a weakening of this axiom called uJR. We hence design new
SWFs and, to this end, prove that uPJR is implied by a more structured fairness notion called
rank-priceability. Based on this insight, we design the Proportional Sequential Borda rule (PSB), a
remarkable simple rule that satisfies rank-priceability and thus also uPJR. Furthermore, we also
prove that PSB guarantees to every subprofile 𝑆 an average utility that is linear in the size of 𝑆 ,
which can be seen as another strong fairness property.

In addition, we suggest two variants of PSB, namely the Ranked Method of Equal Shares (RMES)
and the Borda Rule Adjusting the Flow (FB). RMES allows us to connect our approach to the Method
of Equal Shares, one of the most prominent tools of fair decision making [36, 37]. Moreover, we
demonstrate with this SWF that even rather utilitarian rankings can satisfy uPJR as this rule is
guaranteed to assign roughly 7

16 of the total utility in a utilitarian way. On the other hand, we show
that FB satisfies a stronger fairness notion that extends uPJR to arbitary groups of rankings, thus
further pushing our understanding of proportionality in rank aggregation.
Our work offers numerous possibilities for future work and we next discuss three particularly

interesting directions. (i) Given our success in designing SWFs that satisfy variants of PJR in the
context of rank aggregation, it seems interesting to analyze stronger fairness notions. One could, for
instance, adopt notions such as EJR or core-stability from approval-based committee voting to rank
aggregation and aim to find mechanisms satisfying these properties. (ii) Interestingly, while most
fairness notions in participatory budgeting and committee voting focus on groups of voters with
similar preferences, none of our results relies on this idea. Partly, this is because there are multiple
ways to define similar input rankings (e.g., we may consider two rankings similar if they have a
small swap distance or if they agree on a large prefix) and because it is not clear how to exploit
this precondition. However, we would find it interesting to strengthen both our axiomatic and
quantitative results by focusing on cohesive groups of rankings. (iii) Maybe the biggest restriction
of this paper is to define the utility in terms of the pairwise agreement of rankings. While this
approach is frequently encountered in the literature, it, e.g., neglects that the first position of the
output ranking has often a higher value than other positions. Thus, it seems appealing to extend
our results to more general utility functions.
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A Proof of Proposition 1
Proposition 1. For all 𝑚 ≥ 5, there is a profile 𝑅 and ranking ≻ such that 𝑅(≻) = 𝑚

5 /
(
𝑚
2
)
and

𝑢 (≻, SqK(𝑅)) = 0.

Proof. Fix a number of voters𝑚 ≥ 5 and let 𝑧 = ⌊ (𝑚−1) (𝑚−2)
4 ⌋. We consider the following 4

rankings: ≻1= 𝑥1, 𝑥2 . . . , 𝑥𝑚 , ≻2= 𝑥1, 𝑥𝑚 . . . , 𝑥2, ≻3 is a ranking that puts 𝑥1 last and agrees with
exactly 𝑑 pairs with ≻1, and ≻4 puts 𝑥1 last and orders the remaining pairs exactly inversely to
≻3. Based on these rankings, we will now define a profile 𝑅 used to prove the proposition. For
notational simplicity, we subsequently assume that the weights add up to

(
𝑚
2
)
instead of 1. This is

without loss of generality since we can scale down all weights without affecting the outcome. Now,
let 𝑅 be the profile given by

𝑅(≻1) =
𝑚

5
and 𝑅(≻2) = 𝑅(≻3) = 𝑅(≻4) =

1
3

((
𝑚

2

)
− 𝑚

5

)
.

Further, let ▷ denote the ranking returned by the Squared Kemeny rule. We will show that ▷ is
equal to the ranking ▷∗ = 𝑥𝑚, . . . , 𝑥1. This means that the ranking ≻1 is without representation
in 𝑅, thus proving the proposition. To show this claim, we will introduce additional notation.
Specifically, we denote by Δ(≻,▷) = |{(𝑥,𝑦) ∈ {𝐶 \ 𝑥1}2 : 𝑥 ≻ 𝑦 and 𝑦 ▷ 𝑥}| the swap distance
between an arbitrary ranking ≻ and ▷ after removing 𝑥1 from both rankings. Furthermore, we
define by 𝑑 = 1 + |{𝑥 ∈ 𝐶 \ {𝑥1} : 𝑥1 ▷ 𝑥}| the position of 𝑥1 in ▷. Given this notation, the swap
distance of ▷ to an input rankings ≻𝑖 is (𝑑 − 1) + Δ(≻𝑖 ,▷) for 𝑖 ∈ {1, 2} and (𝑚 − 𝑑) + Δ(≻𝑖 ,▷) for
𝑖 ∈ {3, 4}. We will next show the following auxiliary claims.

(1) It holds that Δ(▷,▷∗) ≤ 1
2
(
𝑚−1

2
)
.

(2) If𝑚 ∈ {5, 6} and Δ(▷,▷∗) ≤ 1
2
(
𝑚−1

2
)
, then 𝑑 > 2𝑚

3 .
(3) If𝑚 ≥ 7 and Δ(▷,▷∗) ≤ 1

2
(
𝑚−1

2
)
, then 𝑑 > 2𝑚

3 + 1.
(4) If𝑚 ∈ {5, 6} and 𝑑 > 2𝑚

3 , then Δ(▷,▷∗) = 0.
(5) If If𝑚 ≥ 7 and 𝑑 > 2𝑚

3 + 1, then Δ(▷,▷∗) = 0.
(6) If Δ(▷,▷∗) = 0, then 𝑑 =𝑚.
In combination, these observations clearly imply that ▷ = ▷∗ when𝑚 ≥ 5. We will next prove

our auxiliary claims.

Proof of Claim (1): We will show that Δ(▷,▷∗) ≤ 1
2
(
𝑚−1

2
)
. Assume for contradiction that

this is not true and let ▷̄ denote the ranking derived from ▷ by inverting the order over the
candidates {𝑥2, . . . , 𝑥𝑚} while keeping the position of 𝑥1 fixed. For instance, if ▷ = 𝑥2, 𝑥1, 𝑥3, 𝑥4, 𝑥5,
then ▷̄ = 𝑥5, 𝑥1, 𝑥4, 𝑥3, 𝑥2. We will show that ▷̄ has a lower cost than ▷ with respect to Squared
Kemeny. To this end, we note ≻1 orders the candidates in {𝑥2, . . . , 𝑥𝑚} inversely to ≻2 and that the
same holds for ≻3 and ≻4. Hence, we compute that

Δ(≻1,▷) =
(
𝑚 − 1

2

)
− Δ(≻2,▷) = Δ(≻2, ▷̄),

Δ(≻2,▷) =
(
𝑚 − 1

2

)
− Δ(≻1,▷) = Δ(≻1, ▷̄),

Δ(≻3,▷) =
(
𝑚 − 1

2

)
− Δ(≻4,▷) = Δ(≻4, ▷̄),

Δ(≻4,▷) =
(
𝑚 − 1

2

)
− Δ(≻3,▷) = Δ(≻3, ▷̄).
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Now, the cost of ▷ with respect to SqK, denoted by 𝐶SqK (▷), is given by

𝐶SqK (▷) = 𝑅(≻1) · (𝑑 − 1 + Δ(≻1,▷))2 + 𝑅(≻2) · (𝑑 − 1 + Δ(≻2,▷))2

+ 𝑅(≻3) · (𝑚 − 𝑑 + Δ(≻3,▷))2 + 𝑅(≻4) · (𝑚 − 𝑑 + Δ(≻4,▷))2 .

Furthermore, the cost of ▷̄ is

𝐶SqK (▷̄) = 𝑅(≻1) · (𝑑 − 1 + Δ(≻1, ▷̄))2 + 𝑅(≻2) · (𝑑 − 1 + Δ(≻2, ▷̄))2

+ 𝑅(≻3) · (𝑚 − 𝑑 + Δ(≻3, ▷̄))2 + 𝑅(≻4) · (𝑚 − 𝑑 + Δ(≻4, ▷̄))2

= 𝑅(≻1) · (𝑑 − 1 + Δ(≻2,▷))2 + 𝑅(≻2) · (𝑑 − 1 + Δ(≻1,▷))2

+ 𝑅(≻3) · (𝑚 − 𝑑 + Δ(≻4,▷))2 + 𝑅(≻4) · (𝑚 − 𝑑 + Δ(≻3,▷))2

Next, we observe that 𝑅(≻3) = 𝑅(≻4) and 𝑅(≻1) < 𝑅(≻2) by the definition of 𝑅. Furthermore,
we assumed that Δ(▷,▷∗) > 1

2
(
𝑚−1

2
)
, so Δ(≻1,▷) < 1

2
(
𝑚−1

2
)
< Δ(≻2,▷) as ≻2 agrees with ▷∗ on

the order of {𝑥2, . . . , 𝑥𝑚} and ≻1 orders these candidates exactly inversely. Using these insights, we
obtain that

𝐶SqK (▷) −𝐶SqK (▷̄)
= (𝑅(≻1) − 𝑅(≻2)) (𝑑 − 1 + Δ(≻1,▷))2 + (𝑅(≻2) − 𝑅(≻1)) (𝑑 − 1 + Δ(≻2,▷))2

+ (𝑅(≻3) − 𝑅(≻4)) (𝑚 − 𝑑 + Δ(≻3,▷))2 + (𝑅(≻4) − 𝑅(≻3)) (𝑚 − 𝑑 + Δ(≻4,▷))2

= (𝑅(≻2) − 𝑅(≻1))
(
(𝑑 − 1 + Δ(≻2,▷))2 − (𝑑 − 1 + Δ(≻1,▷))2)

> 0.

This shows that 𝐶SqK (▷) > 𝐶SqK (▷̄), which contradicts that ▷ is chosen by the Squared Kemeny
rule.

Proofs of Claims (2), (3), and (6): We will next show that 𝑥1 cannot be ranked to highly. To
this end, we assume subsequently only that 𝑑 ≤ 𝑚 − 1; we will refine this assumption for the proofs
of Claims (2) and (3) later on. Now, we first recall that

𝐶SqK (▷) = 𝑅(≻1) · (𝑑 − 1 + Δ(≻1,▷))2 + 𝑅(≻2) · (𝑑 − 1 + Δ(≻2,▷))2

+ 𝑅(≻3) · (𝑚 − 𝑑 + Δ(≻4,▷))2 + 𝑅(≻4) · (𝑚 − 𝑑 + Δ(≻4,▷))2 .

Next, let ▷′ denote the ranking derived from ▷ by moving 𝑥1 one position down without
reordering any other candidates. This means that 𝑥1 is now the (𝑑 + 1)-th best candidate and that
Δ(≻,▷′) = Δ(≻,▷) for all rankings ≻ ∈ R. Hence, the cost of ▷′ is

𝐶SqK (▷′) = 𝑅(≻1) · (𝑑 + Δ(≻1,▷))2 + 𝑅(≻2) · (𝑑 + Δ(≻2,▷))2

+ 𝑅(≻3) · (𝑚 − 𝑑 − 1 + Δ(≻4,▷))2 + 𝑅(≻4) · (𝑚 − 𝑑 − 1 + Δ(≻4,▷))2 .

We aim to show that𝐶SqK (▷) −𝐶SqK (▷′) > 0. This means that ▷ cannot be chosen by the Squared
Kemeny rule as ▷′ has a lower cost. Based on simple calculus, we infer that

𝐶SqK (▷) −𝐶SqK (▷′)
= 𝑅(≻1) · (−2𝑑 − 2Δ(≻1,▷) + 1) + 𝑅(≻2) · (−2𝑑 − 2Δ(≻2,▷) + 1)
+ 𝑅(≻3) · (2(𝑚 − 𝑑) + 2Δ(≻3,▷) − 1) + 𝑅(≻4) · (2(𝑚 − 𝑑) + 2Δ(≻4,▷) − 1)

Next, we note that Δ(≻1,▷) + Δ(≻2,▷) =
(
𝑚−1

2
)
and Δ(≻3,▷) + Δ(≻4,▷) =

(
𝑚−1

2
)
, because ≻1

and ≻2 (resp. ≻3 and ≻4) order the candidates in {𝑥2, . . . , 𝑥𝑚} inverse to each other. Furthermore,
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using the definition of 𝑅, we derive that

𝐶SqK (▷) −𝐶SqK (▷′) =𝑚
5
· (−2𝑑 − 2Δ(≻1,▷) + 1)

+ 1
3

((
𝑚

2

)
− 𝑚

5

)
· (−2𝑑 − 2Δ(≻2,▷) + 1)

+ 1
3

((
𝑚

2

)
− 𝑚

5

)
· (2(𝑚 − 𝑑) + 2Δ(≻3,▷) − 1)

+ 1
3

((
𝑚

2

)
− 𝑚

5

)
· (2(𝑚 − 𝑑) + 2Δ(≻4,▷) − 1)

=
4𝑚
3

((
𝑚

2

)
− 𝑚

5

)
− 2𝑑 ·

(
𝑚

2

)
− 1

3

(
𝑚

2

)
+ 4𝑚

15

− 2
(

1
3

(
𝑚

2

)
− 4𝑚

15

)
Δ(≻2,▷) −

2𝑚
5

(
𝑚 − 1

2

)
+ 2

(
1
3

(
𝑚

2

)
− 𝑚

15

) (
𝑚 − 1

2

)
=

4𝑚
3

((
𝑚

2

)
− 𝑚

5

)
− 2𝑑 ·

(
𝑚

2

)
− 1

3

(
𝑚

2

)
+ 4𝑚

15

+ 2
(

1
3

(
𝑚

2

)
− 4𝑚

15

) ((
𝑚 − 1

2

)
− Δ(≻2,▷)

)
In the first equality, we substitute the definition of 𝑅(≻𝑖 ) for 𝑖 ∈ {1, 2, 3, 4}. In the next equality,

we rearrange the terms: the first line captures all terms that are independent of Δ, the second line
uses that 1

3 (
(
𝑚
2
)
− 𝑚

5 ) −
𝑚
5 = 1

3
(
𝑚
2
)
− 4𝑚

15 and 2𝑚
5 Δ(≻1,▷) + 2𝑚

5 Δ(≻2,▷) = 2𝑚
5

(
𝑚−1

2
)
, and the third

line applies the same idea for Δ(≻3,▷) and Δ(≻4,▷). Finally, the last line follows by rearranging
our terms.

We now process with a case distinction with respect to𝑚 and Δ(▷,▷∗) to prove our three claims.
To this end, we further note that Δ(≻2,▷∗) = 0 as ≻2 and ▷∗ agree on the order ov {𝑥2, . . . , 𝑥𝑚}.
This means that Δ(▷,▷∗) = Δ(≻2,▷).

Claim (2): We assume that𝑚 ∈ {5, 6} and Δ(≻2,▷) = Δ(▷,▷∗) ≤ 1
2
(
𝑚−1

2
)
and aim to show that

𝐶SqK (▷) −𝐶SqK (▷′) > 0 if 𝑑 ≤ 2𝑚
3 . To this end, we observe that the assumptions that Δ(≻2,▷) ≤

1
2
(
𝑚−1

2
)
and 𝑑 ≤ 2𝑚

3 implies that

𝐶SqK (▷) −𝐶SqK (▷′)

≥ 4𝑚
3

((
𝑚

2

)
− 𝑚

5

)
− 4𝑚

3
·
(
𝑚

2

)
− 1

3

(
𝑚

2

)
+ 4𝑚

15
+

(
1
3

(
𝑚

2

)
− 4𝑚

15

)
·
(
𝑚 − 1

2

)
=

(
1
3

(
𝑚

2

)
− 4𝑚

15

)
·
(
𝑚 − 1

2

)
+ 4𝑚

15
− 1

3

(
𝑚

2

)
− 4𝑚2

15
.

Since𝑚 ≥ 5, it holds that
(
𝑚−1

2
)
≥ 6, so our formula further simplifies to

𝐶SqK (▷) −𝐶SqK (▷′) ≥ 2
(
𝑚

2

)
− 20𝑚

15
− 1

3

(
𝑚

2

)
− 4𝑚2

15

Finally, for𝑚 = 5, this term evaluates 2
(5
2
)
− 100

15 − 1
3
(
𝑚
2
)
− 100

15 = 10
3 . Moreover, for𝑚 = 6, we

derive that 2
(6
2
)
− 120

15 − 1
3
(6
2
)
− 144

15 = 375
15 − 266

15 > 0. Hence, in both cases, ▷′ has a lower cost than ▷,
contradicting that ▷ is chosen by the Squared Kemeny rule.
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Claim (3): Next, we assume that𝑚 ≥ 7 and Δ(≻2,▷) = Δ(▷,▷∗) ≤ 1
2
(
𝑚−1

2
)
. This time, our goal

is to show that 𝐶SqK (▷) −𝐶SqK (▷′) > 0 if 𝑑 ≤ 2𝑚
3 + 1. Analogous to Claim (2), we derive that

𝐶SqK (▷) −𝐶SqK (▷′)

≥ 4𝑚
3

((
𝑚

2

)
− 𝑚

5

)
− 4𝑚

3

(
𝑚

2

)
− 2

(
𝑚

2

)
− 1

3

(
𝑚

2

)
+ 4𝑚

15
+

(
1
3

(
𝑚

2

)
− 4𝑚

15

) (
𝑚 − 1

2

)
=

(
1
3

(
𝑚

2

)
− 4𝑚

15

)
·
(
𝑚 − 1

2

)
+ 4𝑚

15
− 2

(
𝑚

2

)
− 1

3

(
𝑚

2

)
− 4𝑚2

15
.

Furthermore, it holds that
(
𝑚−1

2
)
≥ 15 as𝑚 ≥ 7, which implies that

𝐶SqK (▷) −𝐶SqK (▷′) ≥ 5
(
𝑚

2

)
− 4𝑚 + 4𝑚

15
− 2

(
𝑚

2

)
− 1

3

(
𝑚

2

)
− 4𝑚2

15
.

=
8
3
· 𝑚(𝑚 − 1)

2
− 4𝑚 + 4𝑚

15
− 4𝑚2

15

≥ 16
15
𝑚2 − 6𝑚

> 0.

The last inequality here use the fact that𝑚 ≥ 7. This proves again that 𝐶SqK (▷) −𝐶SqK (▷′), so
𝑑 > 2𝑚

3 + 1 in this case.

Claim (6): Finally, we suppose that𝑚 ≥ 5 is arbitrary and that Δ(▷,▷∗) = 0. In this case, we will
show that 𝑑 =𝑚. To this end, we assume that 𝑑 ≤ 𝑚 − 1 and show that 𝐶SqK (▷) > 𝐶SqK (▷′). Our
assumptions imply that

𝐶SqK (▷) −𝐶SqK (▷′)

≥ 4𝑚
3

((
𝑚

2

)
− 𝑚

5

)
− 2𝑚

(
𝑚

2

)
+ 2

(
𝑚

2

)
− 1

3

(
𝑚

2

)
+ 4𝑚

15
+ 2

(
1
3

(
𝑚

2

)
− 4𝑚

15

) (
𝑚 − 1

2

)
=

(
2
3

(
𝑚

2

)
− 8𝑚

15

)
·
(
𝑚 − 1

2

)
− 2𝑚

3

(
𝑚

2

)
+ 2

(
𝑚

2

)
− 4𝑚2

15
+ 4𝑚

15
− 1

3

(
𝑚

2

)
.

Now, for𝑚 = 5, this term evaluates to(
2
3
· 10 − 8 · 5

15

)
· 6 − 2 · 5

3
· 10 + 2 · 10 − 4 · 52

15
+ 4 · 5

15
− 1

3
· 10 = 44 − 126

3
= 2.

Further for𝑚 = 6, we get that(
2
3
· 15 − 8 · 6

15

)
· 10 − 2 · 6

3
· 15 + 2 · 15 − 4 · 62

15
+ 4 · 6

15
− 1

3
· 15 = 98 − 73 = 25.

Finally, for𝑚 ≥ 7, we observe that 2
(
𝑚
2
)
− 4𝑚2

15 + 4𝑚
15 − 1

3
(
𝑚
2
)
> 0. Hence, we have that

𝐶SqK (▷) −𝐶SqK (▷′) >
(

2
3

(
𝑚

2

)
− 8𝑚

15

)
·
(
𝑚 − 1

2

)
− 2𝑚

3

(
𝑚

2

)
>

2
3
·
(
𝑚

2

)
·
(
𝑚 − 1

2

)
− 6𝑚

5

(
𝑚

2

)
.

For the second inequality, we replace the term − 8
15𝑚

(
𝑚−1

2
)
with − 8

15𝑚
(
𝑚
2
)
. Further, it holds that

2
3
(
𝑚−1

2
)
− 6𝑚

5 > 0 if𝑚 ≥ 7. Specifically, for𝑚 = 7, this can be straightforwardly verified and the
term is increasing in 𝑚 when 𝑚 ≥ 7. Hence, it holds for all 𝑚 ≥ 5 that 𝐶SqK (▷) > 𝐶SqK (▷′) if
𝑑 ≤ 𝑚 − 1 and Δ(▷,▷∗) = 0, which shows that 𝑑 =𝑚 under these assumptions.
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Proofs of Claims (4) and (5): Finally, we will show that, when 𝑥1 is placed low in ▷, then
Δ(▷,▷∗) = 0. To this end, let ▷′ denote the ranking derived from ▷ by ordering all candidates
in {𝑥2, . . . , 𝑥𝑚} according to ▷∗ without changing the position of 𝑥1. We aim again to show that
𝐶SqK (▷) > 𝐶SqK (▷′).

We first consider the cost caused by ≻3 and ≻4. Because ≻3 and ≻4 disagree on the order over all
candidates, it holds for all rankings ▷1 with 1 + |{𝑥 ∈ 𝐶 \ {𝑥1} : 𝑥 ▷1 𝑥1}| = 𝑑 that the cost caused
by ≻3 and ≻4 is

𝑅(≻3) · (𝑚 − 𝑑 + Δ(≻3,▷1))2 + 𝑅(≻4) · (𝑚 − 𝑑 +
(
𝑚 − 1

2

)
− Δ(≻3,▷1))2.

Using the fact that 𝑅(≻3) = 𝑅(≻4), this is equivalent to

𝑅(≻3) ·
(
(𝑚 − 𝑑 + Δ(≻3,▷1))2 + (𝑚 − 𝑑 +

(
𝑚 − 1

2

)
− Δ(≻3,▷1))2

)
.

=𝑅(≻3) ·
(
(𝑚 − 𝑑)2 + 2(𝑚 − 𝑑)Δ(≻3,▷1) + Δ(≻3,▷1)2 + (𝑚 − 𝑑)2

+ 2(𝑚 − 𝑑)
( (𝑚 − 1

2

)
− Δ(≻3,▷1)

)
+ (

(
𝑚 − 1

2

)
− Δ)2

)
=𝑅(≻3)

(
2(𝑚 − 𝑑)2 + 2(𝑚 − 𝑑)

(
𝑚 − 1

2

)
+ 2Δ(≻3,▷)2 − 2Δ(≻3,▷1)

(
𝑚 − 1

2

)
+

(
𝑚 − 1

2

)2)
By considering the first order condition with respect to Δ(≻3,▷1), it is easy to see that this term

is minimized when Δ(≻3,▷1) = 1
2
(
𝑚−1

2
)
. Since quadratic functions grow symmetrically from their

minimum, this means that the cost caused by ≻3 and ≻4 is minimal if Δ(≻3,Δ1) = ⌊ 1
2
(
𝑚−1

2
)
⌋. We

finally note that Δ(≻3,▷′) = Δ(≻3,▷∗) = ⌊ 1
2
(
𝑚−1

2
)
⌋. The first equality here follows because ▷′ and

▷ agree on the order of the candidates {𝑥2, . . . 𝑥𝑚}. The second equality holds because ≻3 is chosen
such that it agrees with ≻1 on exactly ⌊ 1

2
(
𝑚−1

2
)
⌋ pairs over {𝑥2, . . . , 𝑥𝑚}. Since ▷∗ and ≻1 order the

candidates in {𝑥2, . . . , 𝑥𝑚} exactly inversely, this shows that Δ(≻3,▷∗) = ⌊ 1
2
(
𝑚−1

2
)
⌋. This means

that the cost caused by ≻3 and ≻4 is weakly less for ▷′ than for ▷ as ▷′ minimizes the cost for
these rankings.

Next, we turn to ≻1 and ≻2. The cost caused by these rankings for a ranking ▷1 is

𝑅(≻1) ·
(
𝑑 − 1 + Δ(≻1,▷1)

)2
+ 𝑅(≻2) ·

(
𝑑 − 1 +

(
𝑚 − 1

2

)
− Δ(≻1,▷1)

)2

=𝑅(≻1) ·
(
(𝑑 − 1)2 + 2(𝑑 − 1)Δ(≻1,▷1) + Δ(≻1,▷1)2

)
+ 𝑅(≻2) ·

(
(𝑑 − 1)2 + 2(𝑑 − 1) (

(
𝑚 − 1

2

)
− Δ(≻1,▷1)) +

(
𝑚 − 1

2

)2
− 2

(
𝑚 − 1

2

)
Δ(≻1,▷1) + Δ(≻1,▷1)2

)
.

We next consider the function 𝑓 that interprets the above term as a function in Δ(≻1,▷1) and
ignores all constant terms. Specifically,

𝑓 (𝑥) = 𝑅(≻1) ·
(
2(𝑑 − 1)𝑥 + 𝑥2

)
+ 𝑅(≻2) ·

(
− 2(𝑑 − 1)𝑥 − 2

(
𝑚 − 1

2

)
𝑥 + 𝑥2

)
We next aim to analyze the minimum of 𝑓 (𝑥), which then gives insight into the optimal swap

distance for our above expression. To this end, we first note that the second derivative of 𝑓 is a
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positive constant, so the value of 𝑓 is decreasing until we reach the minimum. Next, we compute
the derivative of 𝑓 :

𝑓 ′ (𝑥) = 𝑅(≻1) ·
(
2(𝑑 − 1) + 2𝑥

)
+ 𝑅(≻2) ·

(
− 2(𝑑 − 1) − 2

(
𝑚 − 1

2

)
+ 2𝑥

)
.

We aim to show that 𝑓 ′ (
(
𝑚−1

2
)
) ≤ 0 as this means that the optimal value of Δ(≻1,▷1) =

(
𝑚−1

2
)
.

Recall to this end also that Δ(≻1,▷1) ≤
(
𝑚−1

2
)
for every ranking ▷1. To this end, we observe that

𝑓 ′ (
(
𝑚−1

2
)
) = 2𝑅(≻1)

(
𝑚−1

2
)
−2(𝑅(≻2) −𝑅(≻1)) (𝑑 −1). We next consider Claims (4) and (5) separately.

Claim (4): First, we assume that𝑚 ∈ {5, 6} and 𝑑 > 2𝑚
3 . Now, if𝑚 = 5, this means that 𝑑 > 10/3.

Furthermore, as 𝑑 is an integer, we derive that 𝑑 ≥ 4. By using the definition of 𝑅(≻1) and 𝑅(≻2),
we now compute that

𝑓 ′ (
(
𝑚 − 1

2

)
) = 2𝑚

5

(
𝑚 − 1

2

)
− 2

(
1
3

((
𝑚

2

)
− 𝑚

5

)
− 𝑚

5

)
(𝑑 − 1)

≤ 2 · 6 − 2 ·
(

1
3
(10 − 1) − 1

)
· 3

= 0

Similarly, for𝑚 = 6, the condition that 𝑑 > 2𝑚
3 means that 𝑑 > 4. Using again that 𝑑 is an integer,

we get that 𝑑 = 5. Hence, we compute in this case that

𝑓 ′ (
(
𝑚 − 1

2

)
) = 2𝑚

5

(
𝑚 − 1

2

)
− 2

(
1
3

((
𝑚

2

)
− 𝑚

5

)
− 𝑚

5

)
(𝑑 − 1)

≤ 12
5

· 10 − 2 ·
(

1
3
(15 − 6

5
) − 6

5

)
· 4

=
−16

5
Hence, in both cases, we get that the minimum of 𝑓 is reached for 𝑥 ≥

(
𝑚−1

2
)
. Since 𝑓 differs

from the cost of a ranking ▷1 only in constants, this means that the ranking ▷′ also minimizes the
cost caused by ≻1 and ≻2. Put differently, if𝑚 ∈ {5, 6} and 𝑑 > 2𝑚

3 , it holds that Δ(▷,▷1) =
(
𝑚−1

2
)
,

which equivalently means that Δ(▷,▷∗) = 0.

Claim (5): As the second case, we suppose that𝑚 ≥ 7 and 𝑑 > 2𝑚
3 + 1. In this case, we get that

𝑓 ′ (
(
𝑚 − 1

2

)
) ≤ 2𝑚

5

(
𝑚 − 1

2

)
− 2

(
1
3

((
𝑚

2

)
− 𝑚

5

)
− 𝑚

5

)
· 2𝑚

3

=
2𝑚
5

(
𝑚 − 1

2

)
− 4𝑚

9

(
𝑚

2

)
+ 16𝑚2

45

=

(
2𝑚
5

− 4𝑚
9

) (
𝑚 − 1

2

)
− 4𝑚(𝑚 − 1)

9
+ 16𝑚2

45

= − 2
45

(
𝑚 − 1

2

)
− 4𝑚2

45
+ 4𝑚

9
< 0.

In the last inequality, we use that 4𝑚2

45 > 4𝑚
9 because𝑚 ≥ 7. Hence, we have also in this case that

𝑓 is minimized for some value 𝑥 ≥
(
𝑚−1

2
)
, so 𝐶SqK (▷) > 𝐶SqK (▷′). This completes the proof of our

last auxiliary claim. □
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B Proof of Theorem 2
Theorem 2. Let 𝑅 be a profile on 𝑚 candidates and ▷ = PSB(𝑅) be the ranking chosen by the
Proportional Sequential Borda rule. It holds for every subprofile 𝑆 of 𝑅 that

1
|𝑆 |

∑︁
≻∈R

𝑆 (≻)𝑢 (≻,▷) ≥
(
𝑚

2

)
· |𝑆 |

4
− 3

16
.

Proof. Fix a profile 𝑅 and an arbitrary subprofile 𝑆 of 𝑅. Furthermore, let ▷ = 𝑥1, . . . , 𝑥𝑚 denote
the ranking chosen by PSB and let 𝑏𝑖 (≻) denote the budgets of the input rankings in the 𝑖-th
round. To simplify the notation, we will assume throughout this proof that 0

0 = 0. This assumption
removes the need to separately discuss rankings ≻ with 𝑅(≻) = 0, which do not have any influence
on PSB. Our proof will focus on the payments made by the rankings in 𝑆 . We thus define by
𝑏𝑆𝑖 (≻) =

𝑆 (≻)
𝑅 (≻)𝑏𝑖 (≻) for all rankings ≻ ∈ R and 𝑖 ∈ {1, . . . ,𝑚} the budget of 𝑏𝑖 (≻) that is due to 𝑆 .

Moreover, we let 𝑐𝑆𝑖 (≻) = 𝑏𝑆𝑖 (≻) − 𝑏𝑆𝑖+1 (≻) =
𝑆 (≻)
𝑅 (≻) (𝑏𝑖 (≻) − 𝑏𝑖+1 (≻)) denote the payment made by

≻ in the 𝑖-th round with respect to 𝑆 , and by 𝐶𝑆
𝑖 =

∑
≻∈R 𝑐

𝑆
𝑖 (≻) denote the total payment made by

the subprofile 𝑆 in step 𝑖 .
Now, fix a round 𝑖 ∈ {1, . . . ,𝑚 − 1} and let 𝑋𝑖 = {𝑥𝑖 , . . . , 𝑥𝑚}. It holds for all ranking ≻ ∈ R that

𝑏𝑖 (≻) − 𝑏𝑖+1 (≻) = min
(
(𝑚 − 𝑖)𝑏𝑖 (≻)𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )

𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 )
, 𝑏𝑖 (≻)

)
≤ (𝑚 − 𝑖)𝑏𝑖 (≻)𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )

𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 )
.

This means that 𝑐𝑆𝑖 (≻) ·
𝑈 (𝑏𝑖 ,𝑥𝑖 ,𝑋𝑖 )

𝑚−𝑖 ≤ 𝑆 (≻)
𝑅 (≻) ·𝑏𝑖 (≻) ·𝑢 (≻, 𝑥𝑖 , . . . , 𝑋𝑖 ) for all rankings ≻ ∈ R. Further,

we note that 𝑏𝑖 (≻) ≤ 𝑏1 (≻) as our budgets are non-increasing and that 𝑏1 (≻) = 𝑅(≻) ·
(
𝑚
2
)
. Hence,

we derive that 𝑐𝑆𝑖 (≻) ·
𝑈 (𝑏𝑖 ,𝑥𝑖 ,𝑋𝑖 )

𝑚−𝑖 ≤ 𝑆 (≻) ·
(
𝑚
2
)
·𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}). By summing over all rankings,

it follows that

𝐶𝑆
𝑖 · 𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 )

𝑚 − 𝑖
≤

∑︁
≻∈R

𝑆 (≻) ·
(
𝑚

2

)
· 𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ).

Next, we recall that
∑𝑚−1

𝑖=1 (≻, 𝑥𝑖 , {𝑥1, . . . , 𝑥𝑚}) = 𝑢 (≻,▷). Hence, we derive that

𝑚−1∑︁
𝑖=1

𝐶𝑆
𝑖 · 𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 )

𝑚 − 𝑖
≤

𝑚−1∑︁
𝑖=1

∑︁
≻∈R

𝑆 (≻) ·
(
𝑚

2

)
· 𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )

=
∑︁
≻∈R

𝑆 (≻) ·
(
𝑚

2

)
· 𝑢 (≻,▷)

We will next work towards inferring a lower bound on 𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 ). For this, we first recall
that

∑
≻∈R 𝑏1 (≻) = 𝑚 (𝑚−1)

2 by definition. Moreover, it holds that 𝑚 (𝑚−1)
2 =

∑𝑚−1
𝑗=1 𝑚 − 𝑗 . Since we

decrease the total budget by at most𝑚 − 𝑖 in each round 𝑖 , it follows that

∑︁
≻∈R

𝑏𝑖 (≻) ≥
𝑚−1∑︁
𝑗=1

𝑚 − 𝑗 −
𝑖−1∑︁
𝑗=1

𝑚 − 𝑗 =

𝑚−1∑︁
𝑗=𝑖

𝑚 − 𝑗 =
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
.
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We next observe that
∑

𝑥∈𝑋𝑖
𝑢 (≻, 𝑥, 𝑋𝑖 ) =

∑𝑚−𝑖
𝑗=0 𝑗 =

(𝑚−𝑖 ) (𝑚−𝑖+1)
2 for every ranking ≻ ∈ R.

Consequently, the Borda score of all candidates in the 𝑖-th round is∑︁
≻∈R

∑︁
𝑥∈𝑋𝑖

𝑏𝑖 (≻)𝑢𝑖 (≻, 𝑥, 𝑋𝑖 ) =
∑︁
≻∈R

𝑏𝑖 (≻) ·
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2

≥ (𝑚 − 𝑖)2 (𝑚 − 𝑖 + 1)2

4
.

Since there are𝑚 − 𝑖 + 1 candidates remaining in the 𝑖-th round, this means that the average
Borda score is at least (𝑚−𝑖 )2 (𝑚−𝑖+1)

4 . We thus infer that 𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 ) ≥ (𝑚−𝑖 )2 (𝑚−𝑖+1)
4 because 𝑥𝑖

maximizes the Borda score in the 𝑖-th round. By substituting this lower bound in our previous
inequality, we derive that

𝑚−1∑︁
𝑖=1

𝐶𝑆
𝑖 · (𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

4
≤

∑︁
≻∈R

𝑆 (≻) ·
(
𝑚

2

)
· 𝑢 (≻,▷).

Next, we focus on the payments𝐶𝑆
𝑖 . For this, let𝐶

𝑆 =
∑

𝑖∈𝑆 𝐶
𝑆
𝑖 denote the total payment made by

our subprofile 𝑆 and let 𝑘 denote the maximal integer such that𝐶𝑆 ≥ 𝑘 (𝑘+1)
2 . We note that the term

(𝑚−𝑖 ) (𝑚−𝑖+1)
4 is decreasing as 𝑖 increases, so we minimize the left-hand sum if we pay only in late

rounds. Moreover, it holds for all 𝑖 that𝐶𝑆
𝑖 ≤ 𝑚−𝑖 because the total budget reduction in the 𝑖-th step

is upper bounded by this value. Since 𝑘 (𝑘+1)
2 ≤ 𝐶 <

(𝑘+1) (𝑘+2)
2 , we thus minimize our sum when

𝐶𝑆
𝑖 = 𝑚 − 𝑖 for all 𝑖 ∈ {𝑚 − 𝑘, . . . ,𝑚 − 1} and 𝐶𝑆

𝑚−𝑘−1 = 𝐶𝑆 − 𝑘 (𝑘+1)
2 <

(𝑘+1) (𝑘+2)
2 − 𝑘 (𝑘+1)

2 = 𝑘 + 1.
For a simple notation, we let ℓ = 𝐶𝑆 − 𝑘 (𝑘+1)

2 and conclude that

𝑚−1∑︁
𝑖=1

𝐶𝑆
𝑖 · (𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

4

≥
𝑚−1∑︁
𝑖=𝑚−𝑘

(𝑚 − 𝑖) (𝑚 − 𝑖) (𝑚 − 𝑖 + 1)
4

+ ℓ (𝑚 − (𝑚 − 𝑘 − 1)) (𝑚 − (𝑚 − 𝑘 − 1) + 1)
4

=

𝑘∑︁
𝑖=1

𝑖2 (𝑖 + 1)
4

+ ℓ (𝑘 + 1) (𝑘 + 2)
4

We will next show that this term is lower bounded by 𝐶𝑆 (𝐶𝑆+1)
4 . For this, we note that a simple

induction shows that
∑𝑘

𝑖=1 𝑖
2 (𝑖 + 1) = 𝑘4

4 + 5𝑘3

6 + 3𝑘2

4 + 𝑘
6 . Hence, we have that

∑𝑘
𝑖=1 𝑖

2 (𝑖 + 1) + ℓ (𝑘 +
1) (𝑘 + 2) = 𝑘4

4 + 5𝑘3

6 + 3𝑘2

4 + 𝑘
6 + ℓ (𝑘 + 1) (𝑘 + 2). Now, if 𝑘 = 0, it holds that ℓ = 𝐶𝑆 < 1. On the

other hand, our sum evaluates to 2ℓ = 2𝐶𝑆 > 𝐶𝑆 (1 +𝐶𝑆 ). Next, suppose that 𝑘 ≥ 1. In this case, we
observe that

𝑘4

4
+ 5𝑘3

6
+ 3𝑘2

4
+ 𝑘

6
+ ℓ (𝑘 + 1) (𝑘 + 2)

=

(
𝑘4

4
+ 2𝑘3

4
+ 𝑘2

4
+ ℓ𝑘 (𝑘 + 1)) + ℓ (𝑘 + 1)

)
+

(
𝑘3

3
+ 𝑘2

2
+ 𝑘

6
+ ℓ (𝑘 + 1)

)
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Next, we recall that ℓ < 𝑘 + 1, so ℓ (𝑘 + 1) > ℓ2. Further, it is easy to check that 𝑘3

3 + 𝑘
6 ≥ 𝑘2

2 and
that 𝑘2 ≥ 𝑘 (𝑘+1)

2 . Hence, we further simply our sum to

𝑘4

4
+ 5𝑘3

6
+ 3𝑘2

4
+ 𝑘

6
+ ℓ (𝑘 + 1) (𝑘 + 2)

≥
(
𝑘4

4
+ 2𝑘3

4
+ 𝑘2

4
+ ℓ𝑘 (𝑘 + 1)) + ℓ2

)
+

(
𝑘2 + ℓ (𝑘 + 1)

)
≥

(
𝑘 (𝑘 + 1)

2
+ ℓ

)2
+

(
𝑘 (𝑘 + 1)

2
+ ℓ

)
= 𝐶𝑆 (𝐶𝑆 + 1)

This proves our lower bound, so we conclude that 𝐶𝑆 (𝐶𝑆+1)
4 ≤ ∑

≻∈R 𝑆 (≻) ·
(
𝑚
2
)
·𝑢 (≻,▷). Finally,

we note that proof of Theorem 1 shows that the total remaining budget of PSB is at most 3
4 . In

particular, this means that 𝐶𝑆 ≥ ∑
≻∈R 𝑆 (≻) ·

(
𝑚
2
)
− 3

4 . We hence infer that

(∑≻∈R 𝑆 (≻) ·
(
𝑚
2
)
− 3

4 ) (
∑

≻𝑆 𝑆 (≻) ·
(
𝑚
2
)
+ 1

4 )
4

≤
∑︁
≻∈R

𝑆 (≻) ·
(
𝑚

2

)
· 𝑢 (≻,▷).

Equivalently, this means that(
𝑚

2

)
·
∑

≻∈R 𝑆 (≻)
4

− 3
16

≤
∑

≻∈R 𝑆 (≻) ·
(
𝑚
2
)
· 𝑢 (≻,▷)∑

≻∈R 𝑆 (≻)
(
𝑚
2
)
+ 1

4
≤

∑
≻∈R 𝑆 (≻) · 𝑢 (≻,▷)∑

≻∈R 𝑆 (≻) .

Finally, by noting that
∑

≻∈R 𝑆 (≻) = |𝑆 |, our theorem follows. □

C Proofs Omitted form Section 4.2
Theorem 3. RMES is well-defined and satisfies rank-priceability.

Proof. We fix a profile 𝑅 and show both claims of the theorem independently.

Claim 1: RMES is well-defined.
To show that RMES is well-defined, we need to prove that for each round 𝑖 ∈ {1, . . . ,𝑚 − 2}, there
is a candidate 𝑥 with 𝜌𝑥 < ∞. In particular, note that MES is obviously well-defined in the last
round as we simply apply the majority rule for the remaining two candidates. Now, fix some round
𝑖 ∈ {1, . . . ,𝑚 − 2} and assume that a candidate was bought in all previous rounds. Clearly, if 𝑖 = 1,
this assumption is true and it will hold inductively for 𝑖 > 1. Moreover, let 𝑋𝑖 denote the candidates
that have not been placed in the output ranking yet, 𝑏𝑖 (≻) the remaining budgets, and 𝑏1 (≻) the
initial budgets. We first note that for every candidate 𝑥 ∈ 𝑋𝑖 and ranking ≻ ∈ R, it holds that

min(𝑏1 (≻) · 𝑢 (≻, 𝑥, 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢𝑖 (≻, 𝑥, 𝑋𝑖 )) = min(𝑏𝑖 (≻), 𝑢𝑖 (≻, 𝑥, 𝑋𝑖 )) .
In more detail, if 𝑢 (≻, 𝑥, 𝑋𝑖 ) = 0, then clearly min(𝑏1 (≻) · 𝑢 (≻, 𝑥, 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢𝑖 (≻, 𝑥, 𝑋𝑖 )) =

𝑢 (≻, 𝑥, 𝑋𝑖 ) as all other values are non-negative. On the other hand, if 𝑢 (≻, 𝑥, 𝑋𝑖 ) ≥ 1, then
𝑏1 (≻)𝑢 (≻, 𝑥, 𝑋𝑖 ) ≥ 𝑏𝑖 (≻) since 𝑏1 (≻) ≥ 𝑏𝑖 (≻). Hence, to show that there is always a candidate that
can be bought for a price of 𝜌𝑥 < ∞, it hence suffices to show that there is always a candidate 𝑥
such that

∑
≻∈R min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) ≥ 𝑚 − 𝑖 , because this means that 𝑥 is affordable for a price

𝜌 ≤ 1.
Now, to prove this claim, we first recall that the total initial weight is

∑
≻∈R 𝑏1 (≻) =

(
𝑚
2
)
and

that we decrease the budget by 𝑚 − 𝑗 in all rounds 𝑗 < 𝑖 ≤ 𝑚 − 2. Hence, the total remaining
budget at the 𝑖-th round is

∑
≻∈R 𝑏𝑖 (≻) = (𝑚−𝑖 ) (𝑚−𝑖+1)

2 . Next, we proceed with a case distinction
and first suppose that there is a ranking ≻∗ such that 𝑏𝑖 (≻∗) ≥ 𝑚 − 𝑖 − 1. Furthermore, let 𝑥 denote
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the top-ranked candidate of ≻∗. If it even holds that 𝑏𝑖 (≻∗) ≥ 𝑚 − 𝑖 , then this ranking alone can
afford 𝑥 by itself because both 𝑏𝑖 (≻∗) ≥ 𝑢 (≻∗, 𝑥, 𝑋𝑖 ) =𝑚 − 𝑖 . On the other hand, if 𝑏𝑖 (≻∗) < 𝑚 − 𝑖 ,
then min(𝑢 (≻∗, 𝑥, 𝑋𝑖 ), 𝑏𝑖 (≻∗)) = 𝑏𝑖 (≻∗) ≥ 𝑚 − 𝑖 − 1. Next, let 𝑍 denote the set of rankings ≻ such
that ≻≠≻∗ and 𝑢 (≻, 𝑥, 𝑋𝑖 ) > 0 and let 𝐵 =

∑
≻∈𝑍 𝑏𝑖 (≻) denote the total remaining budget of these

rankings. If 𝐵 ≥ 𝑚 − 𝑖 − 𝑏𝑖 (≻∗), 𝑥 can again be bought. In more detail, if there is a ranking ≻ ∈ 𝑍

with 𝑏𝑖 (≻) ≥ 1, then min(𝑏𝑖 (≻∗), 𝑢 (≻∗, 𝑥, 𝑋𝑖 )) +min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) ≥ 𝑚− 𝑖 . On the other hand,
if 𝑏𝑖 (≻) < 1 for all ≻ ∈ 𝑍 , it holds for each of these rankings that min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) = 𝑏𝑖 (≻).
Consequently,min(𝑏𝑖 (≻∗), 𝑢 (≻∗, 𝑥, 𝑋𝑖 ))+

∑
≻∈𝑍 min(𝑏𝑖 (≻), 𝑢 (≻∗, 𝑥, 𝑋𝑖 )) ≥ 𝑚−𝑖 . As the last subcase,

suppose that 𝐵 < 𝑚 − 𝑖 − 𝑏𝑖 (≻∗) and let 𝑦 denote the second-best candidate in 𝑋𝑖 with respect to
≻∗. Since 𝑏𝑖 (≻∗) ≥ 𝑚 − 𝑖 − 1 by assumption, it holds that min(𝑏𝑖 (≻∗), 𝑢 (≻∗, 𝑦, 𝑋𝑖 )) = 𝑢 (≻∗, 𝑦, 𝑋𝑖 ) =
𝑚 − 𝑖 − 1. Furthermore, we observe that all rankings in R \ (𝑍 ∪ {≻∗}) bottom-rank 𝑥 . Moreover,
we have that ∑︁

≻∈R\(𝑍∪{≻∗ })
𝑏𝑖 (≻) =

(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)
2

−
∑︁

≻∈𝑍∪{≻∗ }
𝑏𝑖 (≻)

>
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− (𝑚 − 𝑖)

≥ 1.

Here, the first inequality follows because 𝐵 < 𝑚 − 𝑖 − 𝑏𝑖 (≻∗) and the second one because𝑚 − 𝑖 ≥ 2.
Further, we note that 𝑢 (≻, 𝑦, 𝑋𝑖 ) ≥ 1 for all rankings ≻ ∈ R \ (𝑍 ∪ {≻∗}) because 𝑦 ≻ 𝑥 . Based on
an analogous case distinction as for 𝑥 when 𝐵 ≥ 𝑚 − 𝑖 − 𝑏𝑖 (≻∗), one can now show that 𝑦 can be
afforded.
As the last case, suppose that𝑏𝑖 (≻) < 𝑚−𝑖−1 for all ≻ ∈ R. We will consider the total score of the

candidates 𝑥 ∈ 𝑋𝑖 . To this end, we will partition the rankings with respect to their remaining budget:
𝐵ℓ denotes the set of rankings ≻ ∈ R such that ℓ − 1 ≤ 𝑏𝑖 (≻) < ℓ . By our assumption that 𝑏𝑖 (≻) <
𝑚− 𝑖 −1 for all rankings ≻, it holds for each ≻ ∈ 𝑅 that ≻ ∈𝑊ℓ for some ℓ ∈ {1, . . .𝑚− 𝑖 −1}. Hence,
we derive that

∑
≻∈R min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 ),𝑤 (≻)) = ∑𝑚−𝑖−1

ℓ=1
∑

≻∈𝑊ℓ
min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) for all

𝑥 ∈ 𝑋𝑖 . Further, if ≻ ∈𝑊ℓ , then min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) = 𝑏𝑖 (≻) for all 𝑥 ∈ 𝑋𝑖 with 𝑢 (≻, 𝑥, 𝑋𝑖 ) ≥ ℓ .
Now, there are𝑚 − 𝑖 + 1 candidates in 𝑋𝑖 as we removed 𝑖 − 1 candidates in the previous rounds.
Consequently, we have for all ≻ ∈𝑊ℓ that min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) = 𝑏𝑖 (≻)) holds for𝑚 − 𝑖 + 1 − ℓ

candidates. Using these insights, we compute that∑︁
𝑥∈𝑋𝑖

∑︁
≻∈R

min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) =
∑︁
𝑥∈𝐵

𝑚−𝑖−1∑︁
ℓ=1

∑︁
≻∈𝑊ℓ

min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 ))

≥
𝑚−𝑖−1∑︁
ℓ=1

∑︁
≻∈𝑊𝑗

(𝑚 + 1 − 𝑖 − ℓ)𝑏𝑖 (≻)

≥ 2
∑︁
≻∈R

𝑏𝑖 (≻)

= (𝑚 − 𝑖) (𝑚 − 𝑖 + 1).

The first and second line here use our previous insights. Next, we use that (𝑚 + 1 − 𝑖 − ℓ) ≥ 2
since ℓ ≤ 𝑚 − 𝑖 − 1 and that

∑𝑚−𝑖−1
ℓ=1

∑
≻∈𝑊ℓ

𝑏𝑖 (≻) =
∑

≻∈R 𝑏𝑖 (≻). Finally, since the total remaining
weight is (𝑚−𝑖 ) (𝑚−𝑖+1)

2 , the last step follows. Note that, since there are𝑚 − 𝑖 + 1 candidates in 𝐵,
there must be one such that

∑
≻∈R min(𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) ≥ 𝑚 − 𝑖 . Hence, ew now conclude that

RMES is well-defined during the first𝑚 − 2 steps.
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Claim 2: RMES satisfies rank-priceability.
Consider the ranking ▷ = 𝑥1, . . . , 𝑥𝑚 chosen by RMES for our input profile 𝑅. Moreover, let 𝜌𝑖
denote the price for which candidate 𝑥𝑖 is bought for all 𝑖 ∈ {1, . . . ,𝑚 − 2} and let 𝑏𝑖 (≻) denote the
budget of ranking ≻ in the 𝑖-th step. We will analyze the payments scheme 𝜋 defined as follows: for
𝑖 ∈ {1, . . . ,𝑚−2}, we set 𝜋 (≻, 𝑥𝑖 ) = min(𝜌𝑖𝑏1 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}))
for all ≻. Further, for 𝑖 =𝑚 − 1, we set 𝜋 (≻, 𝑥𝑖 ) = 𝑏𝑚−1 (≻) if 𝑥𝑚−1 ≻ 𝑥𝑚 and 𝜋 (≻, 𝑥𝑖 ) = 0 otherwise.
Finally, the definition of rank-priceability requires that 𝜋 (≻, 𝑥𝑚) = 0 for all ≻ ∈ R.
We first note that Condition (1) of rank-priceability is satisfies for all 𝑖 ∈ {1, . . . ,𝑚 − 2} because

𝜋 (≻, 𝑥𝑖 ) ≤ 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) by definition of our scheme. Further, when 𝑖 =𝑚 − 1, then it holds
that

∑
≻∈R 𝑏𝑖 (≻) = 1. Since 𝜋 (≻, 𝑥𝑚−1) = 0 if 𝑢 (≻, 𝑥𝑚−1, {𝑥𝑚−1, 𝑥𝑚}) and 𝜋 (≻, 𝑥𝑚−1) = 𝑏𝑚−1 (≻) ≤

1 if 𝑢 (≻, 𝑥𝑚−1, {𝑥𝑚−1, 𝑥𝑚}), Condition (1) also holds in this round. Secondly, since 𝜋 (≻, 𝑥𝑖 ) ≤ 𝑏𝑖 (≻)
in every step and 𝑏1 (≻) = 𝑅(≻) ·

(
𝑚
2
)
, Condition (2) of rank-priceability follows. Condition (3) of

rank-priceability follows immediately from the definition of RMES because we pay exactly𝑚 − 𝑖

during all rounds 𝑖 ∈ {1, . . . ,𝑚 − 2} and at most 1 in the𝑚 − 1-th round because the total remaining
budget is 1. This also implies Step (4). In more detail, before the𝑚 − 1-th step, the total remaining
budget is 1 and we spent at least half on 𝑥𝑖 . Hence, the total remaining budget in the end is at most
0.5. Because the total initial budget is

(
𝑚
2
)
, this means that the total payments sum up to at least(

𝑚
2
)
− 1. Hence, rank-priceability is indeed satisfied. □

Proposition 4. Fix a profile 𝑅 on𝑚 candidates and let ▷ = 𝑥1, . . . , 𝑥𝑚 denote the ranking chosen by
RMES. It holds for all 𝑖 ∈ {1, . . . , ⌊𝑚4 ⌋} that 𝑥𝑖 = arg max𝑥∈{𝑥𝑖 ,...,𝑥𝑚 } 𝑈 (𝑏1, 𝑥, {𝑥𝑖 , . . . , 𝑥𝑚}).

Proof. Fix a profile 𝑅, let ▷ = 𝑥1, . . . , 𝑥𝑚 denote the ranking chosen by RMES, and let 𝑋𝑖 =

{𝑥𝑖 , . . . , 𝑥𝑚} for all 𝑖 ∈ {1, . . . ,𝑚}. We first note that the lemma is trivial for𝑚 ≤ 3 because ⌊𝑚4 ⌋ = 0
in this case. Hence, assume that𝑚 ≥ 4. We will show the lemma by induction and fix a round
𝑖 ∈ {1, . . . , ⌊(1− 𝑚

4 )𝑚⌋}. We inductively suppose for all rounds 𝑗 ∈ {1, . . . , 𝑖 − 1} that 𝜌 𝑗 =
𝑚− 𝑗

𝑈 (𝑏1,𝑥 𝑗 ,𝑋 𝑗

and 𝑥 𝑗 = arg max𝑥∈𝑋 𝑗
𝑈 (𝑏1, 𝑥, 𝑋 𝑗 ). Clearly, when 𝑖 = 1, this assumption is true as there were no

previous rounds. The central idea of our proof is to show for every input ranking ≻ ∈ R that

min
(
(𝑚 − 𝑖)𝑏1 (≻)𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )

𝑈 (𝑏1, 𝑥𝑖 , 𝑋𝑖 )
, 𝑏𝑖 (≻), 𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )

)
=

(𝑚 − 𝑖)𝑏1 (≻)𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )
𝑈 (𝑏1, 𝑥𝑖 , 𝑋𝑖 )

.

This implies that 𝑥𝑖 can be bought for a price of 𝜌𝑖 = 𝑚−𝑖
𝑈 (𝑏1,𝑥𝑖 ,𝑋𝑖 ) . Furthermore, if there was an

candidate 𝑥𝑘 with 𝑈 (𝑏1, 𝑥𝑘 , 𝑋𝑖 ) > 𝑈 (𝑏1, 𝑥𝑖 , 𝑋𝑖 ), this candidate could be bought for a price of
𝑚−𝑖

𝑈 (𝑏1,𝑥𝑘 ,𝑋𝑖 ) < 𝑚−𝑖
𝑈 (𝑏1,𝑥𝑖 ,𝑋𝑖 ) , which contradicts that RMES chooses candidate 𝑥𝑖 in the 𝑖-th round. So, it

follows from our claim also that 𝑥𝑖 is the candidate 𝑥∗ maximizing𝑈 (𝑏1, 𝑥, 𝑋𝑖 ).
To prove the above equality, we fix an input ranking ≻ ∈ R and let 𝑥∗ denote the candidate

maximizing𝑈 (𝑏1, 𝑥, 𝑋𝑖 ). We will first show that 𝑚−𝑖
𝑈 (𝑏1,𝑥∗,𝑋𝑖 )𝑏1 (≻)𝑢 (≻, 𝑥∗, 𝑋𝑖 ) ≤ 𝑢 (≻, 𝑥∗, 𝑋𝑖 ). For this,

let 𝑥 denote the top-ranked candidate among 𝑋𝑖 with respect to ≻. It holds that 𝑢 (≻, 𝑥, 𝑋𝑖 ) =𝑚 − 𝑖

as there are𝑚 − 𝑖 + 1 candidates remaining. Since 𝑥∗ maximizes the Borda score, it follows that
𝑈 (𝑏1, 𝑥

∗, 𝑋𝑖 ) ≥ 𝑈 (𝑏1, 𝑥, 𝑋𝑖 ) ≥ 𝑏1 (≻) · (𝑚 − 𝑖). Hence, 𝑚−𝑖
𝑈 (𝑏,𝑥∗,𝑋𝑖 )𝑏1 (≻)𝑢 (≻, 𝑥∗, 𝑋𝑖 ) ≤ 𝑢 (≻, 𝑥∗, 𝑋𝑖 ) as

required.
Next, we will show that 𝑚−𝑖

𝑈 (𝑏1,𝑥∗,𝑋𝑖 )𝑏1 (≻)𝑢 (≻, 𝑥∗, 𝑋𝑖 ) ≤ 𝑏𝑖 (≻). To this end, we observe that, by
the induction hypothesis, it holds for all input rankings ≻ ∈ R that

𝑏𝑖 (≻) = 𝑏1 (≻) −
𝑖−1∑︁
𝑗=1

𝑚 − 𝑗

𝑈 (𝑏1, 𝑥 𝑗 , 𝑋 𝑗 )
𝑏1 (≻)(≻, 𝑥 𝑗 , 𝑋 𝑗 ).

In particular, each ranking ≻ pays 𝑚− 𝑗

𝑈 (𝑏1,𝑥 𝑗 ,𝑋 𝑗 )𝑏1 (≻)𝑢 (≻, 𝑥 𝑗 , 𝑋 𝑗 ) in every round 𝑗 ∈ {1, . . . , 𝑖 − 1}. If
this was not the case in some round 𝑗 , candidate 𝑥 𝑗 could not have been afforded for a price of
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𝑚− 𝑗

𝑈 (𝑏1,𝑥 𝑗 ,𝑋 𝑗 ) as the total payments do not add up to𝑚 − 𝑖 . By combining our insights and dividing by
𝑏1 (≻), it suffices to show that

𝑚 − 𝑖

𝑈 (𝑏1, 𝑥∗, 𝑋𝑖 )
𝑢 (≻, 𝑥∗, 𝑋𝑖 ) ≤ 1 −

𝑖−1∑︁
𝑗=1

𝑚 − 𝑗

𝑈 (𝑏1, 𝑥 𝑗 , 𝑋 𝑗 )
𝑢 (≻, 𝑥 𝑗 , 𝑋 𝑗 ).

For this, we observe for every round 𝑘 ∈ {1, . . . ,𝑚 − 1} that ∑
𝑥∈𝑋𝑘

∑
≻∈R 𝑏1 (≻)𝑢 (≻, 𝑥, 𝑋𝑘 ) =∑

≻∈R 𝑏1 (≻) (𝑚−𝑘 ) (𝑚−𝑘+1)
2 =

𝑚 (𝑚−1)
2 · (𝑚−𝑘 ) (𝑚−𝑘+1)

2 . Since 𝑥∗ maximizes the Borda score in the 𝑖-th
round, this means that𝑈 (𝑏1, 𝑥

∗, 𝑋𝑖 ) ≥ 𝑚 (𝑚−1)
4 · (𝑚 − 𝑖) as the maximum is lower bounded by the

average. In turn, it follows that 𝑚−𝑖
𝑈 (𝑏1,𝑥∗,𝑋𝑖

≤ 4
𝑚 (𝑚−1) . Analogously, it follows for all candidates 𝑥 𝑗

with 𝑗 ∈ {1, . . . , 𝑖 − 1} that𝑈 (𝑏1, 𝑥 𝑗 , 𝑋 𝑗 ) ≥ 𝑚 (𝑚−1)
4 · (𝑚 − 𝑗). Using these insights, it follows that

𝑚 − 𝑖

𝑈 (𝑏1, 𝑥∗, 𝑋𝑖 )
𝑢 (≻, 𝑥∗, 𝑋𝑖 ) ≤

4
𝑚(𝑚 − 1)𝑢 (≻, 𝑥

∗, 𝑋𝑖 ) and

1 −
𝑖−1∑︁
𝑗=1

𝑚 − 𝑗

𝑈 (𝑏1, 𝑥 𝑗 , 𝑋 𝑗 )
𝑢 (≻, 𝑥 𝑗 , 𝑋 𝑗 ) ≥ 1 −

𝑖−1∑︁
𝑗=1

4
𝑚(𝑚 − 1)𝑢 (≻, 𝑥 𝑗 , 𝑋 𝑗 ).

We will show that 4
𝑚 (𝑚−1)𝑢 (≻, 𝑥

∗, 𝑋𝑖 ) ≤ 1−∑𝑖−1
𝑗=1

4
𝑚 (𝑚−1)𝑢 (≻, 𝑥 𝑗 , 𝑋 𝑗 ). Equivalently, we can prove

that 𝑢 (≻, 𝑥∗, 𝑋𝑖 ) +
∑𝑖−1

𝑗=1 𝑢 (≻, 𝑥 𝑗 , 𝑋 𝑗 ) ≤ 𝑚 (𝑚−1)
4 . To this end, we note that 𝑢 (≻, 𝑥∗, 𝑋𝑖 ) ≤ 𝑚 − 𝑖 and

𝑢 (≻, 𝑥 𝑗 , 𝑋 𝑗 ) ≤ 𝑚 − 𝑗 for all 𝑗 ∈ {1, . . . ,𝑚 − 1}. Hence, this inequality is satisfied when
∑𝑖

𝑗=1𝑚 −
𝑗 ≤ 𝑚 (𝑚−1)

4 . Next, we compute that
∑𝑖

𝑗=1𝑚 − 𝑗 =
∑𝑚−1

𝑗=1 𝑗 − ∑𝑚−𝑖−1
𝑗=1 𝑖 =

𝑚 (𝑚−1)
2 − (𝑚−𝑖 ) (𝑚−𝑖−1)

2 .
Consequently, we can further reduce our problem to showing that

𝑚(𝑚 − 1)
2

− (𝑚 − 𝑖) (𝑚 − 𝑖 − 1)
2

≤ 𝑚(𝑚 − 1)
4

.

Finally, we will use that 𝑖 ≤ 𝑚
4 and that𝑚 ≥ 4. In particular, this implies that

(𝑚 − 𝑖) (𝑚 − 𝑖 − 1)
2

≥
3𝑚
4 ( 3𝑚

4 − 1)
2

=
9𝑚2

32
− 3𝑚

8
=
𝑚(𝑚 − 1)

4
+ 𝑚2

32
− 𝑚

8
≥ 𝑚(𝑚 − 1)

4
.

Hence, it indeed holds that 𝑚 (𝑚−1)
2 − (𝑚−𝑖 ) (𝑚−𝑖−1)

2 ≤ 𝑚 (𝑚−1)
4 . □

Theorem 4. Let 𝑅 be a profile on𝑚 ≥ 4 candidates, ▷ = RMES(𝑅), and define 𝜉 =
(𝑚−⌊𝑚4 ⌋

2
)
. It holds

for every subprofile 𝑆 of 𝑅 that

1
|𝑆 |

∑︁
≻∈R

𝑆 (≻)𝑢 (≻,▷) ≥
{(

𝑚
2
)
· |𝑆 |

4 − 1
8 if

(
𝑚
2
)
|𝑆 | − 0.5 ≤ 𝜉

1
2 ·

(
𝑚
2
)
· (1 − 𝜉

(𝑚2 ) |𝑆 |
) + 𝜉+1

4 · 𝜉

(𝑚2 ) |𝑆 |
− 1

4 |𝑆 | if
(
𝑚
2
)
|𝑆 | − 0.5 > 𝜉 .

Proof. Let 𝑅 and 𝑆 be defined as in the theorem and let ▷ = 𝑥1, . . . , 𝑥𝑚 denote a ranking
chosen by RMES for 𝑅. As usual, we let 𝑋𝑖 = {𝑥𝑖 , . . . , 𝑥𝑚}. By the definition of RMES, there is for
every candidates 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑚−2} a price 𝜌𝑖 for which it is bought and we define 𝜌𝑚−1 = 1 for
notational ease. Moreover, let 𝑏𝑖 (≻) denote the budget of every input ranking ≻ ∈ R in the 𝑖-th
round. In particular, 𝑏1 (≻) = 𝑅(≻) ·

(
𝑚
2
)
for all ≻ ∈ R. Next, we let 𝑏𝑆𝑖 (≻) =

𝑆 (≻)
𝑅 (≻)𝑏𝑖 (≻) for all ≻ ∈ R.

As in Theorem 2, we assume here (and henceforth) that 0
0 = 0 for the sake of simple notation.

Finally, we let 𝑐𝑆𝑖 (≻) = 𝑏𝑆𝑖 (≻) −𝑏𝑆𝑖+1 (≻) =
𝑆 (≻)
𝑅 (≻) · min(𝜌𝑖𝑏1 (≻)𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 )) be the

payment of a single ranking ≻ and 𝐶𝑆
𝑖 =

∑
≻∈R

𝑆 (≻)
𝑅 (≻)𝐶

𝑆
𝑖 (≻).



Proportional Representation in Rank Aggregation 33

Now, analogous to the proof of Theorem 6, it can be shown that
𝑚−1∑︁
𝑖=1

𝐶𝑆
𝑖

𝜌𝑖
≤

𝑚−1∑︁
𝑖=1

∑︁
≻∈R

𝑏𝑆1 (≻)𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ) =
∑︁
≻∈R

𝑏𝑆1 (≻)𝑢 (≻,▷).

We will next work to derive upper bounds for all prices 𝜌𝑖 since this allows us to lower bound
our left hand sum. First, it holds that 𝜌𝑚−1 = 1, so we are done with this case. Similar, we will use
that 𝜌𝑚−2 ≤ 1 as we have shown in the proof of ?? that there is a candidate that is affordable for
this price. Secondly, Proposition 4 shows that 𝜌𝑖 = 𝑚−𝑖

𝑈 (𝑏1,𝑥𝑖 ,𝑋𝑖 ) for all 𝑖 ∈ {1, . . . , ⌊𝑚4 ⌋}. Moreover,
we have shown in the proof of this proposition that 𝑈 (𝑏𝑖 , 𝑥𝑖 , 𝑋𝑖 ) ≥ 𝑚 (𝑚−1) (𝑚−𝑖 )

4 , so 𝜌𝑖 ≤ 4
𝑚 (𝑚−1)

for these rounds. Finally, for 𝑖 ∈ {⌊𝑚4 + 1⌋, . . . ,𝑚 − 3}, we note that 𝑏𝑖 (≻) ≤ 𝑏1 (≻) for all ≻. This
implies for all candidate 𝑥 ∈ 𝑋𝑖 and all values of 𝜌 ≥ 0 that∑︁

≻∈R
min(𝜌 · 𝑏1 (≻) · 𝑢 (≻, 𝑥, 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 ))

≥
∑︁
≻∈R

min(𝜌 · 𝑏𝑖 (≻) · 𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 )) .

Now, let 𝜌 and 𝜌 ′ denote the minimal values for which there are candidates 𝑥, 𝑥 ′ ∈ 𝑋𝑖 such
that

∑
≻∈R min(𝜌 · 𝑏1 (≻) · 𝑢 (≻, 𝑥, 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) = 𝑚 − 𝑖 and

∑
≻∈R min(𝜌 ′ · 𝑏𝑖 (≻) ·

𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 )) = 𝑚 − 𝑖 . By our previous observation, we derive that 𝜌 ≤ 𝜌 ′.
We will next show that there is a candidate 𝑥 ∈ 𝑋𝑖 such that

∑
≻∈R min( 4

(𝑚−𝑖+1) (𝑚−𝑖 ) · 𝑏𝑖 (≻) ·
𝑢 (≻, 𝑥, 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 )) ≥ 𝑚 − 𝑖 , thus proving that 𝜌 ≤ 𝜌 ′ ≤ 4

(𝑚−𝑖+1) (𝑚−𝑖 ) .
For this, we first observe that

∑
≻∈R 𝑏𝑖 (≻) = (𝑚−𝑖+1) (𝑚−𝑖 )

2 as the initial total budget is 𝑚 (𝑚−1)
2

and we pay𝑚 − 𝑗 in each round 𝑗 ∈ {1, . . . , 𝑖 − 1}. Now, if there is a ranking ≻ such that 𝑏𝑖 (≻) ≥
(𝑚−𝑖+1) (𝑚−𝑖 )

4 , we can choose 𝑥 as the top-ranked candidate in ≻. Since there are𝑚− 𝑖 + 1 candidates
remaining, it holds that 𝑢 (≻, 𝑥, 𝑋𝑖 ) = 𝑚 − 𝑖 . Furthermore, we have that 𝑏𝑖 (≻) ≥ (𝑚−𝑖+1) (𝑚−𝑖 )

4 ≥
4(𝑚−𝑖 )

4 =𝑚− 𝑖 as 𝑖 ≤ 𝑚−3. Finally, we observe that 4
(𝑚−𝑖+1) (𝑚−𝑖 ) ·𝑏𝑖 (≻) ·𝑢 (≻, 𝑥, 𝑋𝑖 ) ≥ 𝑢 (≻, 𝑥, 𝑋𝑖 ) =

𝑚 − 𝑖 . Hence, the ranking ≻ itself is able to buy 𝑥 for the price of 4
(𝑚−𝑖+1) (𝑚−𝑖 ) .

As the second case, suppose that 𝑏𝑖 (≻) < (𝑚−𝑖+1) (𝑚−𝑖 )
4 for all ≻ ∈ R. In this case, we first note

that 4
(𝑚−𝑖+1) (𝑚−𝑖 )𝑏𝑖 (≻)𝑢 (≻, 𝑥, 𝑋𝑖 ) < 𝑢 (≻, 𝑥, 𝑋𝑖 ) for all ≻ ∈ R and 𝑥 ∈ 𝑋𝑖 as 4

(𝑚−𝑖+1) (𝑚−𝑖 ) ·𝑏𝑖 (≻) < 1.
Moreover, because𝑚 − 𝑖 + 1 ≥ 4 and 𝑢 (≻, 𝑥, 𝑋𝑖 ) ≤ 𝑚 − 𝑖 , it holds that 4

(𝑚−𝑖+1) (𝑚−𝑖 ) ·𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 ) ≤ 1,
so 4

(𝑚−𝑖+1) (𝑚−𝑖 ) · 𝑏𝑖 (≻)𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 ) ≤ 𝑏𝑖 (≻). We now conclude that min( 4
(𝑚−𝑖+1) (𝑚−𝑖 ) · 𝑏𝑖 (≻) ·

𝑢 (≻, 𝑥, 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )) = 4
(𝑚−𝑖+1) (𝑚−𝑖 ) · 𝑏𝑖 (≻) · 𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 ) for all candidates 𝑥 ∈ 𝑋𝑖 and

rankings ≻ ∈ R. Next, we compute that
1

𝑚 − 𝑖 + 1

∑︁
𝑥∈𝑋𝑖

∑︁
≻∈R

min
(

4
(𝑚 − 𝑖 + 1) (𝑚 − 𝑖)𝑏𝑖 (≻)𝑢 (≻, 𝑥, 𝑋𝑖 ), 𝑏𝑖 (≻), 𝑢 (≻, 𝑥, 𝑋𝑖 )

)
=

1
𝑚 − 𝑖 + 1

∑︁
≻∈R

∑︁
𝑥∈𝑋𝑖

4
(𝑚 − 𝑖 + 1) (𝑚 − 𝑖)𝑏𝑖 (≻)𝑢 (≻, 𝑥 𝑗 , 𝑋𝑖 )

=
4

(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)2

∑︁
≻∈R

𝑏𝑖 (≻)
𝑚−𝑖∑︁
𝑗=0

𝑗

=
2

(𝑚 − 𝑖 + 1)
∑︁
≻∈R

𝑏𝑖 (≻)

=𝑚 − 𝑖
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This means that at least one candidate is affordable for a price of 4
(𝑚−𝑖+1) (𝑚−𝑖 ) , so 𝜌 ≤ 𝜌 ′ ≤

4
(𝑚−𝑖 ) (𝑚−𝑖+1) holds also in this case.
Using our bounds on 𝜌𝑖 , we conclude that

⌊𝑚4 ⌋∑︁
𝑖=1

𝐶𝑆
𝑖 𝑚(𝑚 − 1)

4
+

𝑚−3∑︁
𝑖=⌊𝑚4 ⌋+1

𝐶𝑆
𝑖 (𝑚 − 𝑖 + 1) (𝑚 − 𝑖)

4
+𝐶𝑆

𝑚−2 +𝐶𝑆
𝑚−1 ≤

∑︁
≻∈R

𝑏𝑆 (≻)𝑢 (≻,▷).

Next, let𝐶𝑆 =
∑𝑚−1

𝑖=1 𝐶𝑆
𝑖 denote the total paymentsmade by 𝑆 .We note that𝐶𝑆 ≥ ∑

≻∈R 𝑏
𝑆
1 (≻)−0.5

as the total remaining budget of RMES is at most 0.5. Furthermore, let 𝑘 denote the largest integer
such that𝐶𝑆 ≥ 𝑘 (𝑘+1)

2 . We proceed with a case distinction regarding𝐶𝑆 and first assume that𝐶 ≤ 3.
In this case, we minimize the left-hand side of our inequality if 𝑐𝑖 = 0 for all 𝑖 ∈ {1, . . . ,𝑚−3}. Hence,
we derive that

∑
≻∈R 𝑏

𝑆
1 (≻)−0.5 ≤ 𝐶𝑆 ≤ ∑

≻∈R 𝑏𝑆 (≻)𝑢 (≻,▷). By dividing by
∑

≻∈R 𝑏
𝑆
1 (≻) = |𝑆 |

(
𝑚
2
)
,

we derive that

1 − 1
𝑚(𝑚 − 1) |𝑆 | ≤

1
|𝑆 | ·

∑︁
≻∈R

𝑆 (≻) · 𝑢 (≻,▷)

Now, to prove our theorem in this case, we first note that
∑

≻∈R 𝑆 (≻) · 𝑢 (≻,▷) ≥
(
𝑚
2
)
· |𝑆 |

4 − 1
8

holds trivially if |𝑆 | ≤ 1
2
(
𝑚
2
)−1 because |𝑆 |

4 − 1
8 ≤ 0 int his case. Next, we note that𝐶 ≤ 3 implies that

|𝑆 | ≤ 7
2
(
𝑚
2
)−1. We can thus prove our theorem in this case by showing that

(
𝑚
2
)
· |𝑆 |4 − 1

8 ≤ 1− 1
𝑚 (𝑚−1) |𝑆 | .

Equivalently, we can show that 2
(
𝑚
2
)2 |𝑆 |2 − 9

(
𝑚
2
)
|𝑆 | + 4 ≤ 0. Since the left-hand term is a quadratic

function, it suffices to note that 2
(
𝑚
2
)2 |𝑆 |2 − 9

(
𝑚
2
)
|𝑆 | + 4 = 0 if |𝑆 | = 4

(
𝑚
2
)−1 and |𝑆 | = 1

2
(
𝑚
2
)−1. This

proves our inequality, so the theorem holds in this case.
Next, suppose that 3 ≤ 𝐶 ≤ 𝜉 . In this case, we minimize

∑⌊𝑚4 ⌋
𝑖=1

𝐶𝑆
𝑖
𝑚 (𝑚−1)

4 +∑𝑚−3
𝑖=⌊𝑚4 ⌋+1

𝐶𝑆
𝑖
(𝑚−𝑖+1) (𝑚−𝑖 )

4 + 𝐶𝑆
𝑚−2 + 𝐶𝑆

𝑚−1 if the group 𝑆 only pays for candidates chosen in late
rounds. However, it holds that 𝐶𝑆

𝑖 ≤ 𝑚 − 𝑖 as the 𝑖-th candidate has a cost of𝑚 − 𝑖 . Hence, we
minimize our sum by setting𝐶𝑆

𝑖 =𝑚−𝑖 for all 𝑖 ∈ {𝑚−𝑘, . . . ,𝑚−1} and𝐶𝑆
𝑚−𝑘−1 = 𝐶− 𝑘 (𝑘+1)

2 . Since
𝐶𝑆
𝑚−1 = 1 and𝐶𝑆

𝑚−2 = 2, so it holds that𝐶𝑆
𝑚−2 +𝐶𝑆

𝑚−1 =
3
2𝐶

𝑆
𝑚−2 +

1
2𝐶

𝑆
𝑚−1 −

1
2 = 3·2

4 𝑐𝑚−2 + 2·1
4 𝑐𝑚−1 − 1

2 .
Further, by the assumption that 𝐶 ≤ 𝜖 =

(𝑚−⌊𝑚4 ⌋ ) (𝑚−⌊𝑚4 ⌋−1)
2 =

∑𝑚−⌊𝑚4 ⌋−1
𝑗=1 𝑗 , we derive that

𝑘 ≤ 𝑚 − ⌊𝑚4 ⌋ − 1 and this inequality is strict unless 𝐶𝑆 = 𝜉 . Hence, it holds that 𝐶𝑆
𝑖 = 0 for all

𝑖 ∈ {1, . . . , ⌊𝑚4 ⌋}. Next, let ℓ = 𝐶𝑆 − 𝑘 (𝑘+1)
2 . By our reasoning so far, we have that

𝑚−1∑︁
𝑖=𝑚−𝑘

(𝑚 − 𝑖) (𝑚 − 𝑖) (𝑚 − 𝑖 + 1)
4

+ ℓ (𝑘 + 1) (𝑘 + 2)
4

− 1
2
≤

∑︁
≻∈R

𝑏𝑆 (≻)𝑢 (≻,▷).

Next, we note analogous to the proof of Theorem 2 that
𝑚−1∑︁
𝑖=𝑚−𝑘

(𝑚 − 𝑖) (𝑚 − 𝑖) (𝑚 − 𝑖 + 1) + ℓ (𝑘 + 1) (𝑘 + 2)

=

𝑘∑︁
𝑖=1

𝑖2 (𝑖 + 1) + ℓ (𝑘 + 1) (𝑘 + 2)

=
𝑘4

4
+ 5𝑘3

6
+ 3𝑘2

4
+ 𝑘

6
+ ℓ (𝑘 + 1) (𝑘 + 2)

=

(
𝑘4

4
+ 2𝑘3

4
+ 𝑘2

4
+ ℓ𝑘 (𝑘 + 1)) + ℓ (𝑘 + 1)

)
+

(
𝑘3

3
+ 𝑘2

2
+ 𝑘

6
+ ℓ (𝑘 + 1)

)
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We observe that ℓ ≤ 𝑘 + 1, so ℓ (𝑘 + 1) ≥ ℓ2. Furthermore, since 𝑘 ≥ 2, it holds that 𝑘3

3 + 𝑘
6 ≥ 𝑘2

2 + 1
and 𝑘2 ≥ 𝑘 (𝑘+1)

2 . Hence, we derive that
𝑘∑︁
𝑖=1

𝑖2 (𝑖 + 1) + ℓ (𝑘 + 1) (𝑘 + 2) ≥
(
𝑘4

4
+ 2𝑘3

4
+ 𝑘2

4
+ ℓ𝑘 (𝑘 + 1)) + ℓ2

)
+

(
𝑘2 + 1 + ℓ (𝑘 + 1)

)
≥

(
𝑘 (𝑘 + 1)

2
+ ℓ

)2
+

(
𝑘 (𝑘 + 1)

2
+ ℓ

)
+ 2

= 𝐶𝑆 (𝐶𝑆 + 1) + 2.

Substituting this into our original inequality shows that 𝐶 (𝐶+1)
4 ≤ ∑

≻∈R 𝑏
𝑆
𝑖 (≻)𝑢 (≻,▷). Finally,

from here on, we can complete the proof analogously to the proof of Theorem 2.
As last case suppose that 𝐶 > 𝜉 . In this case, we minimize the sum

∑⌊𝑚4 ⌋
𝑖=1

𝐶𝑆
𝑖
𝑚 (𝑚−1)

4 +∑𝑚−3
𝑖=⌊𝑚4 ⌋+1

𝐶𝑆
𝑖
(𝑚−𝑖+1) (𝑚−𝑖 )

4 + 𝐶𝑆
𝑚−2 + 𝐶𝑆

𝑚−1 by setting 𝐶𝑆
𝑖 = 𝑚 − 𝑖 for all 𝑖 ∈ {⌊𝑚4 + 1⌋, . . . ,𝑚 − 1}

and distributing the remaining budget arbitrarily on the rounds 𝑖 ∈ {1, . . . , ⌊𝑚4 ⌋}. We note that
this means that we spend a budget of 𝜉 in the rounds {⌊𝑚4 + 1⌋, . . . ,𝑚 − 1}. Hence, we can use the
computations from the previous case to derive that 1 + 2 +∑𝑚−𝑖

𝑖=𝑚−⌊𝑚4 ⌋−1
(𝑚−𝑖 ) (𝑚−𝑖 ) (𝑚−𝑖+1)

4 ≥ 𝜉 (𝜉+1)
4 .

This follows effectively by assuming 𝐶𝑆 = 𝜉 and repeating our argument. On the other hand, in the
rounds 𝑖 ∈ {1, . . . , ⌊𝑚4 }, we obtain a utility of 𝑚 (𝑚−1)

4
∑⌊𝑚4 ⌋

𝑖=1 𝐶𝑆
𝑖 =

𝑚 (𝑚−1)
4 (𝐶𝑆 − 𝜉). In summary, we

conclude that
𝑚(𝑚 − 1)

4
(𝐶𝑆 − 𝜉) + 𝜉 (𝜉 + 1)

2
≤

∑︁
≻∈R

𝑏𝑆 (≻)𝑢 (≻,▷).

Next, we use that 𝐶𝑠 ≥
(
𝑚
2
)
|𝑆 | − 0.5 and divide by

(
𝑚
2
)
|𝑆 | to derive that

1
2
·
(
𝑚

2

) (
1 − 1

2
(
𝑚
2
)
|𝑆 |

− 𝜉(
𝑚
2
)
|𝑆 |

)
+ 𝜉 (𝜉 + 1)

2
(
𝑚
2
)
|𝑆 |

≤ 1
|𝑆 |

∑︁
≻∈R

𝑆 (≻)𝑢 (≻,▷).

Since this expression is equivalent to the term in the theorem, this completes the proof. □

D Proofs Omitted from Section 4.3
Proposition 5. The following claims are true:

(1) If a ranking is pair-priceable for a profile, it also satisfies sPJR.
(2) For every profile, there is a pair-priceable ranking.

Proof. We will show both claims independently from each other.

Claim (1): Pair-priceability implies sPJR. Fix a profile 𝑅 on𝑚 candidates and suppose that ▷
is a pair-priceable ranking for 𝑅. Moreover, we denote by 𝑆 an arbitrary subprofile of 𝑅 and aim
to show that |𝐴(▷) ∩ ⋃

≻∈R : 𝑆 (≻)>0 𝐴(≻)| ≥ ⌊𝑆 (≻) ·
(
𝑚
2
)
⌋. To this end, let 𝜋 denote the payment

scheme that verifies the pair-priceability of ▷. By Condition (4) of pair-priceability, we have that∑
≻∈R

∑
(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐴(▷) 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) >

(
𝑚
2
)
−1. Since the total budget of all rankings is

(
𝑚
2
)
, this implies

that ∑︁
≻∈R : 𝑆 (≻)>0

∑︁
(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐴(▷)

𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) >
(
𝑚

2

)
·

∑︁
≻∈R : 𝑆 (≻)>0

𝑅(≻) − 1 ≥ |𝑆 | ·
(
𝑚

2

)
− 1.

Next, by Conditions (1) and (3), each ranking ≻ only pays for pairs (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐴(≻) and we can
pay at most 1 to each such pair. Put differently, this means that the rankings with positive weight in
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𝑆 can only pay for the pairs in 𝐴(▷) ∩ ⋃
≻∈R : 𝑆 (≻)>0 𝐴(≻) and at most 1 for each such pair. Hence,

it holds that ∑︁
≻∈R : 𝑆 (≻)>0

∑︁
(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐴(▷)

𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) ≤ |𝐴(▷) ∩
⋃

≻∈R : 𝑆 (≻)>0
𝐴(≻)|.

By combining our two inequalities, we conclude that

|𝑆 | ·
(
𝑚

2

)
− 1 < |𝐴(▷) ∩

⋃
≻∈R : 𝑆 (≻)>0

𝐴(≻)|.

Finally, since the right side of this inequality is an integer, it follows that ⌊|𝑆 | ·
(
𝑚
2
)
⌋ ≤ |𝐴(▷) ∩⋃

≻∈R : 𝑆 (≻)>0 𝐴(≻)|, thus proving that sPJR holds.

Claim (2): Pair-priceable rankings are guaranteed to exist Fix a profile 𝑅 on𝑚 candidates.
Wewill construct a pair-priceable ranking in rounds and, in every round, we will identify a candidate
𝑥𝑖 such that the cost of the pairs (𝑥𝑖 , 𝑥) can be fully covered for all remaining candidates 𝑥 . To make
this more formal, fix some round 𝑖 ∈ {1, . . . ,𝑚 − 2} and let 𝑏𝑖 (≻) denote the remaining budgets of
the rankings and 𝑋𝑖 the remaining candidates. In the first round, we have that 𝑏1 (≻) = 𝑅(≻) ·

(
𝑚
2
)

and 𝑋1 = 𝐶 . We further assume that
∑

≻∈R 𝑏𝑖 (≻) = (𝑚−𝑖 ) (𝑚−𝑖+1)
2 , which is true for the first round

by the definition of 𝑏1. Now, in the 𝑖-th round, we aim to find a candidate 𝑥∗ and a payment function
𝜋𝑖 : R × 𝑋𝑖 \ {𝑥∗} → [0, 1] such that (i)

∑
𝑥∈𝑋𝑖\{𝑥∗ } 𝜋𝑖 (≻, 𝑥) ≤ 𝑏𝑖 (≻) for all ≻ ∈ R, (ii) 𝜋𝑖 (≻, 𝑥) = 0

for all ≻ ∈ R and 𝑥 ∈ 𝑋𝑖 with 𝑥 ≻ 𝑥∗, and (iii)
∑

≻∈R 𝜋𝑖 (≻, 𝑥) = 1 for all 𝑥 ∈ 𝑋𝑖 . We note that the
payment scheme 𝜋𝑖 can also be interpreted as a payment scheme for the pairs (𝑥∗, 𝑥).
For identifying such a candidate 𝑥∗ and the payment scheme 𝜋𝑖 , we will introduce domination

graphs, which are studied in the context of metric distortion of voting rules [e.g., 21, 23, 24].
Specifically, the domination graph of a candidate 𝑥 is given by 𝐺𝑥 = (R, 𝑋𝑖 , 𝐸𝑥 ), where (≻, 𝑦) ∈ 𝐸𝑥
if and only if 𝑥 ≻ 𝑦 or 𝑥 = 𝑦. Less formally, in the domination graph of 𝑥 , every ranking ≻ has
an edge to every candidate 𝑦 ∈ 𝑋𝑖 \ {𝑥} that is weakly worse than 𝑥 in ≻. Our interest in these
domination graphs comes from the ranking-matching lemma shown in the previously cited papers:
for any two functions 𝑝 : R → R>=0 and 𝑞 : 𝑋𝑖 → R>=0 such that

∑
≻∈R 𝑝 (≻) = ∑

𝑥∈𝑋𝑖
𝑞(𝑥) > 0,

there is a candidate 𝑥∗ and a matching 𝜇 : R ×𝐶 → R≥0 in the domination graph𝐺𝑥 such that (a)
𝑝 (≻) = ∑

𝑥∈𝑋𝑖
𝜇 (≻, 𝑥) for all ≻ ∈ R, (b) 𝑞(𝑥) = ∑

≻∈R 𝜇 (≻, 𝑥) for all ≻ ∈ R, and (c) 𝜇 (≻, 𝑥) = 0 for
all (≻, 𝑥) ∉ 𝐸𝑥∗ .
Next, let 𝑞 denote a weight function over the candidates 𝑋𝑖 given by 𝑞(𝑥) = 𝑚−𝑖

2 . We note that
𝑞(𝑥) ≥ 1 because we assume that 𝑖 ≤ 𝑚 − 2, and that

∑
𝑥∈𝑋𝑖

𝑞(𝑥) = (𝑚−𝑖 ) (𝑚−𝑖+1)
2 =

∑
≻∈R 𝑏𝑖 (≻)

because 𝑋𝑖 contains𝑚 − 𝑖 + 1 candidates. Hence, the ranking-matching lemma shows that there
is a candidate 𝑥∗ and a matching 𝜇 that satisfies the Conditions (a), (b), and (c). Based on 𝜇, we
define the payment scheme 𝜋𝑖 for 𝑥∗ by 𝜋𝑖 (≻, 𝑥) = 2

𝑚−𝑖 𝜇 (≻, 𝑥) for all ≻ ∈ A and 𝑥 ∈ 𝑋𝑖 \ {𝑥∗}.
We next show that 𝜋𝑖 satisfies Conditions (i), (ii), and (iii) (of the first paragraph). In more detail,
Condition (i) holds because

∑
𝑥∈𝑋𝑖\{𝑥∗ } 𝜋𝑖 (≻, 𝑥) =

∑
𝑥∈𝑋𝑖\{𝑥∗ }

2
𝑚−𝑖 𝜇 (≻, 𝑥) ≤

∑
𝑥∈𝑋𝑖

𝜇 (≻, 𝑥) = 𝑏𝑖 (𝑥)
for every ranking ≻, where the last equality uses Condition (a) of 𝜇. Further, Condition (ii) is true
because (≻, 𝑥) ∉ 𝐸𝑥∗ if 𝑥 ≻ 𝑥∗ and thus 𝜋𝑖 (≻, 𝑥) = 2

𝑚−𝑖 𝜇 (≻, 𝑥) = 0 by Condition (c) of 𝜇. Finally,
condition (iii) follows since

∑
≻∈R 𝜋𝑖 (≻, 𝑥) =

∑
≻∈R

2
𝑚−𝑖 𝜇 (≻, 𝑥) = 1 for all 𝑥 ∈ 𝑋𝑖 \ {𝑥∗}, where we

use Condition (b) of 𝜇 in the last step.
After identifying the candidate 𝑥∗ and its payment function 𝜋𝑖 , we place 𝑥∗ at the 𝑖-th position of

our output ranking, set𝑋𝑖+1 = 𝑋𝑖 \ {𝑥∗} and 𝑏𝑖+1 (≻) = 𝑏𝑖 (≻) −
∑

𝑥∈𝑋𝑖\{𝑥∗ } 𝜋 (≻, 𝑥) for all ≻ ∈ R, and
proceed with the next round. Since we deduct a total budget by𝑚 − 𝑖 in this round, the remaining
budget in the next round will be (𝑚−𝑖 ) (𝑚−𝑖+1)

2 − (𝑚 − 𝑖) = (𝑚−𝑖−1) (𝑚−𝑖 )
2 , so this precondition of our

construction remains true.
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We observe that the above scheme only works when 𝑖 ≤ 𝑚 − 2, which leaves open what to
do in the last round. In this case, we will use a simple majority vote over the last two candidates
𝑥,𝑦 with respect to the remaining budgets to determine the winner: if

∑
≻∈R : 𝑥≻𝑦 𝑏𝑚−1 (≻) >∑

≻∈R : 𝑦≻𝑥 𝑏𝑚−1 (≻), we place 𝑥 at position𝑚 − 1 of the output ranking and 𝑦 at the last position.
On the other hand, if

∑
≻∈R : 𝑥≻𝑦 𝑏𝑚−1 (≻) <

∑
≻∈R : 𝑦≻𝑥 𝑏𝑚−1 (≻), we place 𝑦 at position𝑚 − 1 and

𝑥 at position𝑚. A majority tie can be resolved arbitrarily. Furthermore, denote by 𝑥∗ the candidate
that is ranked at position𝑚 − 𝑖 and by 𝑦 the candidate that is ranked last. We define the payment
scheme 𝜋𝑚−1 of this step by 𝜋𝑚−1 (≻, 𝑦) = 𝑏𝑖 (≻) if 𝑥∗ ≻ 𝑦 and 𝜋𝑚−1 (≻, 𝑦) = 0 if 𝑦 ≻ 𝑥∗. We note
here also that 𝑏𝑚−1 (≻) ≤ 1 for all ≻ ∈ R because

∑
≻∈R 𝑏𝑚−1 (≻) = (𝑚−(𝑚−1) ) (𝑚−(𝑚−1)+1)

2 = 1.
Finally, let ▷ = 𝑥1, . . . , 𝑥𝑚 denote the ranking constructed by the above process and let 𝜋𝑖 denote

the payment scheme for every step. We define the global payment scheme 𝜋 : R ×𝐴(▷) → [0, 1]
by 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) = 𝜋𝑖 (≻, 𝑥 𝑗 ) for all ≻ ∈ R and (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐴(▷). We claim that 𝜋 satisfies all
conditions of rank-priceability. For Condition (1), we note for all ≻ ∈ R and (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐴(▷) that
𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) = 𝜋𝑖 (≻, 𝑥 𝑗 ) = 0 if 𝑥 𝑗 ≻ 𝑥𝑖 and 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) ≤ 1 if 𝑥 𝑗 ≻ 𝑥𝑖 since

∑
≻∈R 𝜋𝑖 (≻, 𝑥 𝑗 ) = 1.

Condition (2) follows because 𝑏1 (≻) = 𝑅(≻) ·
(
𝑚
2
)
for all ≻ ∈ R and we never increase the budget

of a ranking in our process. Moreover, our budgets are never negative as 𝜋 (≻, 𝑥𝑖 ) is always upper
bounded by 𝑏𝑖 (≻). Hence, it holds that

∑
(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐴(▷) 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) ≤ 𝑅(≻) ·

(
𝑚
2
)
for all rankings

≻. Condition (3) of rank-priceability holds since
∑

≻∈R 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) =
∑

≻∈R 𝜋𝑖 (≻, 𝑥 𝑗 ) ≤ 1 for all
(𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐴(▷). Finally, Condition (4) of rank-priceability is true because the total remaining budget
is atmost 1

2 . Inmore detail, the remaining budget in the (𝑚−1)-the round is
(
𝑚
2
)
−∑𝑚−2

𝑖=1 (𝑚−𝑖) = 1 and
we spent at least half of this budget in the last step. Thus,

∑
≻∈R

∑
(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐴(▷) 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) >

(
𝑚
2
)
−1

and ▷ is indeed rank-priceable for 𝑅. □

Theorem 5. The Flow-adjusting Borda rule is pair-priceable.

Proof. Fix some profile 𝑅 and let ▷ = 𝑥1, . . . , 𝑥𝑚 denote the ranking selected by FB. Further, let
𝑏𝑖 (≻) denote the budgets of the ranking ≻ in the 𝑖-th round and let 𝑋𝑖 = {𝑥𝑖 , . . . , 𝑥𝑚}. Furthermore,
let 𝐺𝑥𝑖 denote the flow network of FB in the 𝑖-th round and 𝑓𝑖 the maximum flow chosen for 𝐺𝑖 .
We will show that the payment scheme 𝜋 given by 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) = 𝑓𝑖 (𝑣≻, 𝑣𝑥 𝑗

) for all ≻ ∈ R and
(𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐴(▷) satisfies all conditions of pair-priceability.
Condition (1): We first note that 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) = 0 if 𝑥 𝑗 ≻ 𝑥𝑖 because there is no edge from ≻ to

𝑥 𝑗 in the flow network 𝐺𝑥𝑖 in this case. Furthermore, if 𝑥𝑖 ≻ 𝑥 𝑗 , it holds that 𝑓𝑖 (≻, 𝑥 𝑗 ) ≤ 1 because
the capacity from 𝑣𝑥 𝑗

to the source is 1. Hence, it follows for all rankings ≻ and pairs of candidates
(𝑥𝑖 , 𝑥 𝑗 ) that 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) ≤ 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , 𝑥 𝑗 }).
Condition (2): This condition is true because 𝑏1 (≻) = 𝑅(≻) ·

(
𝑚
2
)
for all ≻ ∈ R. Moreover, we note

that 𝑏𝑖 (≻) ≥ 0 for all rankings ≻ and rounds 𝑖 because it is never possible to decrease the budget of
a ranking by more than 𝑏𝑖 (≻). This is encoded in our flow network as the capacity from the sink to
a ranking vertex 𝑣≻ is 𝑏𝑖 (≻). Consequently, we have that

∑
(𝑥𝑖 ,𝑥 𝑗 ) ∈𝐴(▷) 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) ≤ 𝑅(≻) ·

(
𝑚
2
)

for all ≻ ∈ R.
Condition (3): It is immediate from the construction of the flow network 𝐺𝑥𝑖 that∑
≻∈R 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) ≤ 1 for all (𝑥𝑖 , 𝑥 𝑗 ) ∈ 𝐴 because the capacity of the edge from 𝑣𝑥 𝑗

to the
sink 𝑡 has capacity 1. Hence, it holds for the outflow of 𝑥 𝑗 that 𝑓𝑖 (𝑣𝑥 𝑗

, 𝑡) ≤ 1 which, in turn, im-
plies that

∑
≻∈R 𝑓𝑖 (𝑣≻, 𝑣𝑥 𝑗

) ≤ 1. Since
∑

≻∈R 𝜋 (≻, (𝑥𝑖 , 𝑥 𝑗 )) =
∑

≻∈R 𝑓𝑖 (≻, 𝑥 𝑗 ), this proves the third
condition of pair-priceability.

Condition (4): For this condition, we need to show that the remaining budget after the execution
of the Flow-adjusting Borda rule is less than 1. To this end, we will first show that for all rounds
𝑖 ∈ {1, . . . ,𝑚 − 3}, the maximum flow in 𝐺𝑥𝑖 has value𝑚 − 𝑖 . To show this, fix such a round 𝑖 and
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suppose that our claim is true for all rounds 𝑗 < 𝑖 . If 𝑖 = 1, this assumption is true as there were no
previous rounds and it will hold inductively for 𝑖 > 1. We first note that the total budget in this
round is ∑︁

≻∈R
𝑏𝑖 (≻) =

(𝑚 − 1)𝑚
2

−
𝑖−1∑︁
𝑗=1

𝑚 − 𝑗 =

𝑚−𝑖∑︁
𝑗=1

𝑗 =
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
.

Next, assume for contradiction that the maximum flow in𝐺𝑥𝑖 = (𝑉 , 𝐸, 𝑐) has a value not equal to
𝑚 − 𝑖 . We note that no flow in 𝐺𝑥𝑖 can have a value of more than𝑚 − 𝑖 because the capacities of
all edges pointing to the sink 𝑡 is

∑
𝑦∈𝑋𝑖\{𝑥𝑖 } 𝑐 (𝑣𝑦, 𝑡) = 𝑚 − 𝑖 . Hence, our assumption means that

the maximum flow has a value strictly less than𝑚 − 𝑖 . By the maximum flow-MinCut equivalence,
this means that there is an (𝑠, 𝑡)-cut 𝑆 = (𝑇,𝑉 \𝑇 ) in 𝐺𝑥𝑖 such that

∑
(𝑣,𝑤 ) ∈𝐸 : 𝑣∈𝑇,𝑤∈𝑉 \𝑇 𝑐 (𝑣,𝑤) <

𝑚 − 𝑖 . It follows from this insight that 𝑆 does not cut any edge connecting a ranking vertex
and a candidate vertex because all of these edges have unbounded capacity. Furthermore, let
𝑍 = {𝑦 ∈ 𝑋𝑖 \ {𝑥𝑖 } : (𝑣𝑦, 𝑡) ∈ 𝑇 ∨ (𝑣𝑦, 𝑡) ∈ 𝑉 \𝑇 } denote the set of candidates such that the edge
from the corresponding vertex to the sink is not separated by 𝑆 . We note that 𝑍 ≠ ∅ because
otherwise, 𝑆 cuts all edges from candidate vertices to the source and thus has a weight of𝑚 − 𝑖 .
Next, let R̄ denote the set of rankings ≻ such that there is an edge from 𝑣≻ to a candidate vertex 𝑣𝑦
with 𝑦 ∈ 𝑍 . All edges from the source to the ranking vertices 𝑣≻ with ≻ ∈ R̄ have been cut as 𝑆
does otherwise not disconnect 𝑠 and 𝑡 . Furthermore, the total cost for cutting these edges is less
than |𝑍 | because 𝑆 would have a value of at least𝑚 − 𝑖 otherwise. Put differently, there is a set of
candidates 𝑍 such that the rankings in R̄ = {≻ ∈ R : ∃𝑦 ∈ 𝑍 : 𝑥𝑖 ≻ 𝑦} have a total budget of less
than |𝑍 |.
We will show that this observation contradicts that 𝑥𝑖 maximizes 𝑈 (𝑏𝑖 , 𝑥, 𝑋𝑖 ) when 𝑖 ≥ 𝑚 − 3.

To this end, we define by R𝑍≻𝑥𝑖 the set of rankings that prefer all candidates in a given set 𝑍 to 𝑥 .
Letting 𝑧 = |𝑍 |, our previous insights show that∑︁

≻∈R𝑍≻𝑥

𝑏𝑖 (≻) >
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝑧

because
∑

≻∈R𝑍≻𝑥 𝑏𝑖 (≻) +
∑

≻∈R̄ 𝑏𝑖 (≻) =
(𝑚−𝑖 ) (𝑚−𝑖+1)

2 . Since all rankings in R𝑍≻𝑥 prefer all candi-
dates in 𝑍 to 𝑥𝑖 , it holds that∑︁

𝑦∈𝑍

∑︁
≻∈R𝑍≻𝑥

𝑏𝑖 (≻) (𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ) − 𝑢 (≻, 𝑦, 𝑋𝑖 )) ≤ −
∑︁

≻∈R𝑍≻𝑥

𝑏𝑖 (≻)
𝑧∑︁
𝑗=1

𝑗

< −
(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝑧

)
· 𝑧 (𝑧 + 1)

2
.

On the other hand, in the best case, it holds for all rankings ≻ ∈ R̄ with 𝑏𝑖 (≻) > 0 that 𝑥𝑖 is
top-ranked and the candidates in 𝑍 are bottom-ranked. As the maximal Borda score with𝑚 − 𝑖 + 1
candidates is𝑚 − 𝑖 , we derive that∑︁

𝑦∈𝑍

∑︁
≻∈R̄

𝑏𝑖 (≻) (𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ) − 𝑢 (≻, 𝑦, 𝑋𝑖 )) ≤
∑︁
≻∈R̄

𝑏𝑖 (≻)
𝑧∑︁
𝑖=1

(𝑚 − 𝑖 + 1 − 𝑧)

< 𝑧 ·
(
(𝑚 − 𝑖 + 1)𝑧 − 𝑧 (𝑧 + 1)

2

)
.
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Finally, since 𝑥𝑖 maximizes
∑

≻∈R 𝑏𝑖 (≻)𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ), it holds that
∑

≻∈R 𝑏𝑖 (≻)𝑢𝑖 (≻, 𝑥, 𝑋𝑖 ) ≥∑
≻∈R 𝑏𝑖 (≻)𝑢 (≻, 𝑧, 𝑋 − 𝑖) for all 𝑧 ∈ 𝑍 . By summing up over the candidates in 𝑍 , we hence get that

∑︁
𝑦∈𝑍

∑︁
≻∈R

𝑏𝑖 (≻)(𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ) − 𝑢 (≻, 𝑦, 𝑋 ))

=
∑︁
𝑦∈𝑍

∑︁
≻∈R𝑍≻𝑥

𝑏𝑖 (≻)(𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ) − 𝑢 (≻, 𝑦, 𝑋𝑖 )) +
∑︁
𝑦∈𝑍

∑︁
≻∈R̄

𝑏𝑖 (≻)(𝑢 (≻, 𝑥𝑖 , 𝑋𝑖 ) − 𝑢 (≻, 𝑦, 𝑋𝑖 ))

< −
(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝑧

)
· 𝑧 (𝑧 + 1)

2
+ 𝑧

(
(𝑚 − 𝑖 + 1)𝑧 − 𝑧 (𝑧 + 1)

2

)
= (𝑚 − 𝑖 + 1)𝑧2 − (𝑚 − 𝑖) (𝑚 − 𝑖 + 1)𝑧 (𝑧 + 1)

4

= (𝑚 − 𝑖 + 1)𝑧
(
𝑧 − (𝑚 − 𝑖) (𝑧 + 1)

4

)

Now, if 𝑖 ≤ 𝑚 − 4 and thus𝑚 − 𝑖 ≥ 4, it is clear that 𝑧 − (𝑚−𝑖 ) (𝑧+1)
4 < 0, thus showing that 𝑥𝑖

cannot be the Borda winner. Next, if 𝑖 =𝑚 − 3, we have that 𝑧 − (𝑚−𝑖 ) (𝑧+1)
4 = 𝑧 − 3(𝑧+1)

4 = 𝑧
4 −

3
4 ≤ 0

because 𝑧 ≤ 3 if only four candidates are remaining. Combined with our previous inequality, we get
a contradiction to the fact that 𝑥𝑖 maximizes the Borda score. This shows that our initial assumption
is wrong and there is indeed a maximum flow of value𝑚 − 𝑖 when 𝑖 ∈ {1, . . . ,𝑚 − 3}.

By our analysis so far, we conclude that the total budget
∑

≻∈R 𝑏𝑖 (≻) = 3 if 𝑖 =𝑚−2. Furthermore,
we note that we are left with three candidates𝑋𝑚−2 = {𝑥𝑚−2, 𝑥𝑚−1, 𝑥𝑚}when 𝑖 =𝑚−2. We will next
prove that, in this round, the budget decreases by at least 1.5. Assume for contradiction that this is
not the case and consider again a maximum flow 𝑓𝑚−2 in our flow network 𝐺𝑥𝑚−2 . Our assumption
means that the value of 𝑓𝑚−2 is less than 1.5. Now, first suppose that 𝑓𝑚−2 (𝑣𝑥𝑚−1 , 𝑡)) < 1 and
𝑓𝑚−2 (𝑣𝑥𝑚 , 𝑡)) < 1, i.e., the outflow of both candidate vertices is less than the capacity of these edges.
Since 𝑓𝑚−2 is a maximum flow, this means that the capacity for all edges from the sink to the ranking
vertices 𝑣≻ for rankings such that 𝑥𝑚−2 ≻ 𝑥𝑚−1 or 𝑥𝑚−2 ≻ 𝑥𝑚 is exhausted. Moreover, since the
value of 𝑓𝑚−2 is less than 1.5, this means that the total budget of these rankings is less than 1.5. Next,
it holds that 𝑢 (𝑥𝑚−2, ≻, 𝑋𝑚−2) ≤ 2 for all rankings ≻, so we derive that 𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2) < 3.
However, it is simple to compute that

∑
𝑥∈𝑋𝑚−2

∑
≻∈R 𝑏𝑚−2 (≻)𝑢 (≻, 𝑥, 𝑋𝑚−2) = 9, so there is a

candidate with a total Borda score of at least 3, thus contradicting that 𝑥𝑚−2 maximizes this score.
For the second case, we assume without loss of generality that 𝑓𝑚−2 (𝑣𝑥𝑚 , 𝑡) = 1. This implies that

𝑓𝑚−2 (𝑣𝑥𝑚−1 , 𝑡) < 0.5 since the inflow of 𝑡 equals the value of 𝑓𝑚−2. Now, suppose there is a ranking
≻ such that 𝑏𝑚−2 (≻) > 0 and 𝑥𝑚−2 is top-ranked in ≻. If 𝑓𝑚−2 (𝑣≻, 𝑣𝑥𝑚 ) > 0, we can redistribute the
flow from this edge to (𝑣≻, 𝑣𝑥𝑚−1 ) without reducing the value of 𝑓𝑚−2. Hence, this gives us another
maximum flow and the insights of the previous paragraph yield a contradiction. Thus, we conclude
that 𝑓𝑚−2 (𝑣≻, 𝑣𝑥𝑚 ) = 0 for all rankings ≻ in which 𝑥𝑚−2 is top-ranked. Using again the maximality
of 𝑓𝑚−2, this means that the total budget of rankings ≻ with 𝑥𝑚−2 ≻ 𝑥𝑚−1 is less than 0.5 as we
could otherwise increase the flow through 𝑥𝑚−1. We will show that this means that 𝑥𝑚−1 has a
higher Borda score than 𝑥𝑚−2. For this, we observe that the rankings ≻ with 𝑥𝑚−2 ≻ 𝑥𝑚−1 give at
most two points more to 𝑥𝑚−2 than to 𝑥𝑚−1, whereas every other ranking gives at least one more
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point to 𝑥𝑚−1 than to 𝑥𝑚−2. Thus, we conclude that

𝑈 (𝑏𝑚−2, 𝑥𝑚−2, 𝑋𝑚−2) −𝑈 (𝑏𝑚−2, 𝑥𝑚−1, 𝑋𝑚−2)

≤ 2
∑︁

≻∈R : 𝑥𝑚−2≻𝑥𝑚−1

𝑏𝑚−2 (≻) −
∑︁

≻∈R : 𝑥𝑚−1≻𝑥𝑚−2

𝑏𝑚−2 (≻)

< 2 · 0.5 − 2.5
< 0.

This is again a contradiction to the fact that 𝑥𝑚−2 maximizes 𝑈 (𝑏𝑖 , 𝑥, 𝑋𝑚−2), so we get that we
indeed reduce the total budget by at least 1.5. Hence, the remaining budget for the last round is at
most 3 − 1.5 = 1.5
Finally, in the last round, the candidate maximizing 𝑈 (𝑏𝑚−1, 𝑥, 𝑋𝑚−1) is simply the winner

of the majority vote between 𝑥𝑚−1 and 𝑥𝑚 . It is thus straightforward that we reduce the total
budget by at least half, so we end up with a budget of at most 3

4 . This proves the last condition of
pair-priceability. □

Theorem 6. Let 𝑅 be a profile on 𝑚 candidates and ▷ = FB(𝑅) the ranking chosen by the Flow-
adjusting Borda rule. It holds for every subprofile 𝑆 of 𝑅 that

1
|𝑆 |

∑︁
≻∈R

𝑆 (≻)𝑢 (≻,▷) ≥
(
𝑚

2

)
· |𝑆 |

4
− 3

16
.

Proof. Fix a profile 𝑅 and let ▷ = 𝑥1, . . . , 𝑥𝑚 denote the ranking chosen by FB. We will closely
follow the proof of Theorem 2 and thus define by 𝑏𝑖 (≻) the budget of ranking ≻ in the 𝑖-th round of
the Flow-adjusting Borda rule. In particular, 𝑏1 (≻) = 𝑅(≻) ·

(
𝑚
2
)
for all rankings ≻ ∈ R. Furthermore,

let 𝑓𝑖 denote the maximum flow chosen in the 𝑖-th round of FB and define the cost per utility ratio
𝜌𝑖 by max≻∈R : 𝑏𝑖 (≻)>0

𝑓𝑖 (𝑠,𝑣≻ )
𝑏𝑖 (≻) ·𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 }) . Lastly, we will throughout the proof assume that 0

0 = 0
to avoid trivial corner cases.
We will show this theorem in two steps. First, we will show that 𝜌𝑖 ≤ 4

(𝑚−𝑖 ) (𝑚−𝑖+1) for all
𝑖 ∈ {1, . . . ,𝑚 − 3}, 𝜌𝑚−2 ≤ 1, and 𝜌𝑚−1 ≤ 1. Based on this insight, we will prove the theorem in a
second step.

Step 1: We start by showing our upper bounds on 𝜌𝑖 . To this end, we fix a round 𝑖 and let
𝐺𝑥𝑖 = (𝑉 , 𝐸, 𝑐) denote the flow network used by FB in this round. It holds for every ranking
≻ that 𝑓𝑖 (𝑠, 𝑣≻) ≤ 𝑏𝑖 (≻) since 𝑐 (𝑠, 𝑣≻) = 𝑏𝑖 (≻). Hence, we derive that 𝑓𝑖 (𝑠,𝑣≻ )

𝑏𝑖 (≻) ·𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 }) ≤
1

𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 }) ≤ 1 if 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) > 0. On the other, if 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) = 0, then ≻
bottom-ranks 𝑥𝑖 among {𝑥𝑖 , . . . , 𝑥𝑚}. Thus, ≻ has no outgoing edge in 𝐺𝑥𝑖 and 𝑓 (𝑠, 𝑣≻) = 0. This
implies that 𝑓𝑖 (𝑠,𝑣≻ )

𝑏𝑖 (≻) ·𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 }) = 0 if 𝑢𝑖 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) = 0 (or, put differently, we can ignore
≻ as it does not pay anything in this case). It follows that 𝜌𝑖 ≤ 1 for all rounds 𝑖 , thus proving our
upper bounds for 𝜌𝑚−2 and 𝜌𝑚−1.
Next, we suppose that 𝑖 ∈ {1, . . . ,𝑚 − 3} and aim to show that 𝑓𝑖 (𝑠,𝑣≻ )

𝑏𝑖 (≻) ·𝑢𝑖 (≻) ≤ 4
(𝑚−𝑖 ) (𝑚−𝑖+1) . To

this end, we will prove that the flow network 𝐺𝑥𝑖 admits a flow 𝑓 ∗𝑖 with value 𝑚 − 𝑖 such that
𝑓 ∗𝑖 (𝑠, 𝑣≻) ≤

4𝑏𝑖 (≻)𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 })
(𝑚−𝑖 ) (𝑚−𝑖+1) for all ≻ ∈ R. For this, consider the modified flow network 𝐺 ′

𝑥 ′
𝑖

=

(𝑉 , 𝐸, 𝑐′), which uses the same vertices and edges as 𝐺𝑥𝑖 but has different capacities. Specifically,
we set 𝑐′ (𝑠, 𝑣≻) = 𝑏𝑖 (≻) · 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) for all ranking vertices, 𝑐′ (𝑣≻, 𝑣𝑥 ) is still unbounded
for all rankings ≻ and candidates 𝑥 with 𝑥𝑖 ≻ 𝑥 , and 𝑐′ (𝑣𝑥 , 𝑡) =

(𝑚−𝑖 ) (𝑚−𝑖+1)
4 for all candidates

𝑥 ∈ {𝑥𝑖+1, . . . , 𝑥𝑚}. We will show that𝐺 ′
𝑥𝑖
permits a flow 𝑓 ′𝑖 of value (𝑚−𝑖 )2 (𝑚−𝑖+1)

4 . Based on 𝑓 ′𝑖 , we
will then define the flow 𝑓 ∗𝑖 by 𝑓 ∗𝑖 (𝑒) =

4𝑓 ′𝑖 (𝑒 )
𝑚 (𝑚−1) for all 𝑒 ∈ 𝐸. We claim that 𝑓 ∗𝑖 is feasible for𝐺𝑥𝑖 and
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satisfies that 𝑓 ∗𝑖 (𝑠,𝑣≻ )
𝑏𝑖 (≻) ·𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 }) ≤ 4

(𝑚−𝑖 ) (𝑚−𝑖+1) for all ≻ ∈ R. For the feasibility, we observe for
every edge 𝑒 ∈ 𝐸 that 𝑓 ∗𝑖 (𝑒) =

4𝑓 ′𝑖 (𝑒 )
(𝑚−𝑖 ) (𝑚−𝑖+1) ≤ 4𝑐′ (𝑒 )

(𝑚−𝑖 ) (𝑚−𝑖+1) ≤ 𝑐 (𝑒). Inmore detail, for the edges from
candidates vertices 𝑣𝑥 to the sink 𝑡 , this holds as 𝑐′ (𝑣𝑥 , 𝑡) = (𝑚−𝑖 ) (𝑚−𝑖+1)

4 and 𝑐 (𝑣𝑥 , 𝑡) = 1. For edges
from the source 𝑠 to ranking vertices 𝑣≻ , our claim holds as 4𝑐′ (𝑠,𝑣≻ )

(𝑚−𝑖 ) (𝑚−𝑖+1) =
4𝑏𝑖 (≻)𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 }

(𝑚−𝑖 ) (𝑚−𝑖+1) ≤
𝑏𝑖 (≻) = 𝑐 (𝑠, 𝑣≻). For the second step, we use that𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) ≤ 𝑚−𝑖 and that 4 ≤ 𝑚−𝑖 +1
as 𝑖 ≤ 𝑚−3. Furthermore, it holds by definition that 𝑓 ∗𝑖 (𝑥, 𝑣≻) ≤

4𝑏𝑖 (≻)𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 })
(𝑚−𝑖 ) (𝑚−𝑖+1) for all ranking

≻, so 𝑓 ∗𝑖 (𝑠,𝑣≻ )
𝑏𝑖 (≻) ·𝑢𝑖 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 }) ≤ 4

(𝑚−𝑖 ) (𝑚−𝑖+1) for all ≻ ∈ R.
Now, we assume for contradiction that our modified flow network𝐺 ′

𝑥𝑖
does not permit a flow

of value (𝑚−𝑖 )2 (𝑚−𝑖+1)
4 . By the maximum flow-MinCut equivalence, this means that there is an

(𝑠, 𝑡)-cut (𝑇,𝑉 \ 𝑇 ) in 𝐺 ′
𝑥𝑖
whose total weight is less than (𝑚−𝑖+1) (𝑚−𝑖 )2

4 . Let 𝑍 denote the set of
candidates for which the candidate vertex is not separated from the sink by (𝑇,𝑉 \𝑇 ), i.e., 𝑍 is the
set of candidates 𝑥 such that 𝑣𝑥 ∈ 𝑇 if and only if 𝑡 ∈ 𝑇 . Since there are (𝑚 − 𝑖) candidate vertices
and all edges (𝑣𝑥 , 𝑡) have a weight of (𝑚−𝑖 ) (𝑚−𝑖+1)

4 , we derive that 𝑍 ≠ ∅ as (𝑇,𝑉 \𝑇 ) would have a
value of at least (𝑚−𝑖+1) (𝑚−𝑖 )2

4 otherwise. Moreover, (𝑇,𝑉 \𝑇 ) cannot disconnect any edge from a
ranking node to a candidate node as these have unbounded capacity. Finally, let R̄ denote the set
of rankings ≻ such that (𝑣≻, 𝑣𝑥 ) ∈ 𝐸 for a candidate 𝑥 ∈ 𝑍 . All edges from the sink to the ranking
vertices 𝑣≻ for ≻ ∈ R̄ must be disconnected as there is otherwise still a path from 𝑠 to 𝑡 in 𝐺 ′

𝑥𝑖
.

Moreover, the total capacities of these edges is less than |𝑍 | (𝑚−𝑖 ) (𝑚−𝑖+1)
4 . Otherwise, the weight of

(𝑇,𝑉 \𝑇 ) is at least (𝑚−𝑖+1) (𝑚−𝑖 )2

4 because we cut (𝑚 − 𝑖 − |𝑍 |) edges from candidate vertices to
the sink, each of which has a weight of (𝑚−𝑖+1) (𝑚−𝑖 )

4 .
In summary, this analysis shows that there is a set of candidates 𝑍 ⊆ {𝑥𝑖+1, . . . , 𝑥𝑚} such that∑
≻∈R̄ 𝑏𝑖 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) < 𝑧

(𝑚−𝑖+1) (𝑚−𝑖 )
4 , where 𝑧 = |𝑍 | and R̄ = {≻ ∈ R : ∃𝑦 ∈ 𝑍 : 𝑥𝑖 ≻

𝑦}. We will show that this contradicts with the fact that 𝑥𝑖 maximizes the 𝑈 (𝑏𝑖 , 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}. To
this end, let𝜑 =

∑
≻∈R̄ 𝑏𝑖 (≻) and first assume that𝜑 ≥ (𝑚−𝑖+1) (𝑚−𝑖 )

4 . Because each ranking≻ ∈ R\R̄
prefers all candidates in 𝑍 to 𝑥𝑖 , 𝑥𝑖 receives a score of at most𝑚 − 𝑧 − 𝑖 from each of these rankings.
Since we have shown in the proof of Theorem 5 that the total remaining budget is

∑
≻∈R 𝑏𝑖 (≻) =

(𝑚−𝑖 ) (𝑚−𝑖+1)
2 , this means that

∑
≻∈R̄ 𝑏𝑖 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) ≤ ( (𝑚−𝑖 ) (𝑚−𝑖+1)

2 − 𝜑) (𝑚 − 𝑧 − 𝑖).
Combined with the assumption that

∑
≻∈R̄ 𝑏𝑖 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) < 𝑧

(𝑚−𝑖 ) (𝑚−𝑖+1)
4 , we now

derive that

∑︁
≻∈R

𝑏𝑖 (≻)𝑢𝑖 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚})

=
∑︁

≻∈R\R̄
𝑏𝑖 (≻)𝑢 (≻, 𝑥,𝐶) +

∑︁
≻∈R̄

𝑏𝑖 (≻)𝑢 (≻, 𝑥,𝐶)

<

(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝜑

)
(𝑚 − 𝑧 − 𝑖) + 𝑧

(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)
4

≤ (𝑚 − 𝑖)2 (𝑚 − 𝑖 + 1)
4

.
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In the last step, we use that 𝜑 ≥ (𝑚−𝑖 ) (𝑚−𝑖+1)
4 and thus (𝑚−𝑖 ) (𝑚−𝑖+1)

2 −𝜑 ≤ (𝑚−𝑖 ) (𝑚−𝑖+1)
4 . We next

note that the average Borda score with respect to 𝑏𝑖 is

1
𝑚 − 𝑖 + 1

∑︁
𝑦∈{𝑥𝑖 ,...,𝑥𝑚 }

∑︁
≻∈R

𝑏𝑖 (≻)𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚}) = 1
𝑚 − 𝑖 + 1

∑︁
≻∈R

𝑏𝑖 (≻)
𝑚−𝑖∑︁
𝑗=0

𝑗

=
(𝑚 − 𝑖)2 (𝑚 − 𝑖 + 1)

4
.

However, this means that there is a candidate 𝑦 with
∑

≻∈R 𝑏𝑖 (≻)𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚}) ≥
(𝑚−𝑖 )2 (𝑚−𝑖+1)

4 > 𝑈 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}), which contradicts that 𝑥𝑖 is selected by FB in this step.
As the second case, suppose that 𝜑 <

𝑚 (𝑚−1)
4 . Since 𝑥𝑖 maximizes the total Borda score with

respect to 𝑥𝑖 , it holds for every candidate 𝑦 ∈ 𝑍 that

0 ≤
∑︁
≻∈R̄

𝑏𝑖 (≻)(𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) − 𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚}))

+
∑︁

≻∈R\R̄
𝑏𝑖 (≻)(𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) − 𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚})).

This implies further that

0 ≤ 1
𝑧

∑︁
≻∈R̄

∑︁
𝑦∈𝑍

𝑏𝑖 (≻)(𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) − 𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚}))

+ 1
𝑧

∑︁
≻∈R\R̄

∑︁
𝑦∈𝑍

𝑏𝑖 (≻)(𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) − 𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚})).

Equivalently, this means that

∑︁
≻∈R̄

𝑏𝑖 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) ≥ 1
𝑧

∑︁
≻∈R̄

∑︁
𝑦∈𝑍

𝑏𝑖 (≻)𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚})

+ 1
𝑧

∑︁
≻∈R\R̄

∑︁
𝑦∈𝑍

𝑏𝑖 (≻)(𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚}) − 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚})).

Next, since
∑

𝑦∈𝑍 𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚}) ≥ ∑𝑧−1
𝑗=0 𝑗 for every ranking ≻, it follows that

1
𝑧

∑︁
≻∈R̄

∑︁
𝑦∈𝑍

𝑏𝑖 (≻)𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚}) ≥ 1
𝑧

∑︁
≻∈R̄

𝑏𝑖 (≻)
𝑧−1∑︁
𝑗=0

𝑗 = 𝜑
𝑧 − 1

2
.

Furthermore, every ranking ≻ ∈ R \ R̄ ranks all candidates in 𝑍 ahead of 𝑥𝑖 , so∑
𝑦∈𝑍 𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚}) − 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) ≥ ∑𝑧

𝑗=1 𝑗 for each ≻ ∈ R \ R̄. Based on this



Proportional Representation in Rank Aggregation 43

insight and the fact that
∑

≻∈R 𝑏𝑖 (≻) = (𝑚−𝑖 ) (𝑚−𝑖+1)
2 , we compute that

1
𝑧

∑︁
≻∈R\R̄

∑︁
𝑦∈𝑍

𝑏𝑖 (≻)(𝑢 (≻, 𝑦, {𝑥𝑖 , . . . , 𝑥𝑚}) − 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}))

≥ 1
𝑧

∑︁
≻∈R\R̄

𝑏𝑖 (≻)
𝑧∑︁
𝑗=1

𝑗

=
1
𝑧

(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝜑

) (
𝑧∑︁
𝑗=1

(𝑚 − 𝑖 + 1 − 𝑗) − 𝑧 (𝑚 − 𝑖 − 𝑧)
)

=

(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝜑

)
·
(
(𝑚 − 𝑖 + 1) − 𝑧 + 1

2

)
−

(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝜑

)
(𝑚 − 𝑖 − 𝑧)

Putting our inequalities together, this means that∑︁
≻∈R̄

𝑏𝑖 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚})

≥ 𝜑
𝑧 − 1

2
+

(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝜑

)
·
(
(𝑚 − 𝑖 + 1) − 𝑧 + 1

2

)
−

(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝜑

)
(𝑚 − 𝑖 − 𝑧)

=
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
· 𝑧 − 1

2
+

(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝜑

)
· (𝑚 − 𝑖 + 1 − 𝑧)

−
(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝜑

)
(𝑚 − 𝑖 − 𝑧)

=
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
· 𝑧 − 1

2
+

(
(𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

2
− 𝜑

)
≥ 𝑚(𝑚 − 1)

4
𝑧.

Here, the last inequality follows by using that𝜑 ≤ 𝑚 (𝑚−1)
4 . This directly disproves the assumption

that
∑

≻∈R̄ 𝑏𝑖 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) < 𝑚 (𝑚−1)
4 𝑧, so we also showed our claim in this case.

Step 2:We are now ready to prove the theorem and thus fix an arbitrary subprofile 𝑆 of 𝑅. We
will closely follow the proof of Theorem 2 and thus define 𝑏𝑆𝑖 (≻) =

𝑆 (≻)
𝑅 (≻)𝑏𝑖 (≻) = 𝑆 (≻) ·

(
𝑚
2
)
for all

𝑖 ∈ {1, . . . ,𝑚} and ≻ ∈ R. Next, we let 𝑐𝑆𝑖 (≻) = 𝑏𝑆𝑖 (≻) − 𝑏𝑆𝑖+1 (≻) denote the payment made by the
ranking ≻ with respect to its budget in 𝑆 and by 𝐶𝑆

𝑖 =
∑

≻∈R 𝑐
𝑆
𝑖 (≻) the total payment made by the

subprofile 𝑆 in the 𝑖-th round.
Now, fix a round 𝑖 ∈ {1, . . . ,𝑚 − 1} in the execution of the Flow-adjusting Borda rule. We first

observe that for every ranking ≻, it holds that 𝑏𝑖 (≻) − 𝑏𝑖+1 (≻) = 𝑓𝑖 (≻) as the computed flow
determines the payment. Furthermore, by the definition of 𝜌𝑖 , we have that

𝑓𝑖 (𝑠,𝑣≻ )
𝑏𝑖 (≻) ·𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 }) ≤

𝜌𝑖 . Equivalently, this means that 𝑏𝑖 (≻) ·𝑢 (≻,𝑥𝑖 ,{𝑥𝑖 ,...,𝑥𝑚 })
𝑓𝑖 (𝑠,𝑣≻ ) ≥ 1

𝜌𝑖
. By combining our insight, it follows

that 𝑏𝑖 (≻) · 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) ≥ 𝑏𝑖 (≻)−𝑏𝑖+1 (≻) )
𝜌𝑖

. Furthermore, by multiplying both sides with
𝑆 (≻)
𝑅 (≻) , we get that 𝑏

𝑆
𝑖 (≻) · 𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) ≥ 𝑐𝑆

𝑖
(≻)
𝜌𝑖

. Finally, summing over all the rankings
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≻ ∈ R, we conclude that
𝐶𝑆
𝑖

𝜌𝑖
≤

∑︁
≻∈R

𝑏𝑆𝑖 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥1, . . . , 𝑥𝑚}) ≤
∑︁
≻∈R

𝑏𝑆1 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥1, . . . , 𝑥𝑚}) .

Moreover, by summing over all rounds 𝑖 ∈ {1, . . . ,𝑚 − 1}, we infer that
𝑚−1∑︁
𝑖=1

𝐶𝑆
𝑖

𝜌𝑖
≤

𝑚−1∑︁
𝑖=1

∑︁
≻∈R

𝑏𝑆1 (≻)𝑢 (≻, 𝑥𝑖 , {𝑥𝑖 , . . . , 𝑥𝑚}) =
∑︁
≻∈R

𝑏𝑆1 (≻)𝑢 (≻,▷).

In turn, our upper bounds on 𝜌𝑖 proven in Step 1 show that
𝑚−3∑︁
𝑖=1

𝐶𝑆
𝑖 (𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

4
+𝐶𝑆

𝑚−2 +𝐶𝑆
𝑚−1 ≤

∑︁
≻∈R

𝑏𝑆1 (≻)𝑢 (≻,▷).

Next, let 𝐶 =
∑𝑚−1

𝑖=1 𝐶𝑆
𝑖 denote the total payments made by 𝑆 and note that 𝐶 ≥ ∑

≻∈R 𝑏
𝑆
1 (≻) −

3
4

because we have shown in the proof of Theorem 5 that the total remaining budget of FB is at
most 3

4 . Moreover, let 𝑘 denote the largest integer such that 𝐶 ≥ 𝑘 (𝑘+1)
2 . Now, since the coefficients

of our sum are weakly decreasing as 𝑖 increases, we minimize this term by assuming that 𝐶 is
only distributed at the late payments. However, in each round 𝑖 , it is only possible to pay at most
𝑚 − 𝑖 . Hence, the left-hand sum of the above inequality is minimized if 𝐶𝑚−𝑖 = 𝑚 − 𝑖 for all
𝑖 ∈ {𝑚 − 1, . . . ,𝑚 − 𝑘} and 𝐶𝑚−𝑘−1 = 𝐶 − 𝑘 (𝑘+1)

2 .
We next proceed with a case distinction regarding 𝐶 (resp. 𝑘) and first suppose that 𝐶 ≤ 3. In

this case, we have in the worst-case that 𝐶𝑆
𝑖 = 0 for all 𝑖 ∈ {1, . . . ,𝑚 − 3}, so we can simplify our

inequality to 𝐶 ≤ ∑
≻∈R 𝑏

𝑆
1 (≻)𝑢 (≻,▷). Further, by using that 𝐶 ≥ |𝑆 | ·

(
𝑚
2
)
− 3

4 and dividing by
|𝑆 | ·

(
𝑚
2
)
, this means that

1 − 3
2𝑚(𝑚 − 1) · |𝑆 | ≤

1
|𝑆 | ·

(
𝑚

2

)−1
·
∑︁
≻∈R

𝑏𝑆1 (≻)𝑢 (≻,▷) =
1
|𝑆 |

∑︁
≻∈R

𝑆 (≻)𝑢 (≻,▷).

Now, we first note that the bound of the theorem is trivial if |𝑆 | ≤ 3
4 ·

(
𝑚
2
)−1 because then(

𝑚
2
)
· |𝑆 |

4 − 3
16 ≤ 0. We hence assume that |𝑆 | > 3

4 . Moreover, our assumption that𝐶 ≤ 3 implies that
|𝑆 | ≤ 3 + 3

4 . We will now show that for all these values of |𝑆 | that
(
𝑚
2
)
· |𝑆 |

4 − 3
16 ≤ 1 − 3

2𝑚 (𝑚−1) · |𝑆 | .
By subtracting 1 − 3

2𝑚 (𝑚−1) · |𝑆 | form both sides and multiplying with 16|𝑆 | ·
(
𝑚
2
)
, we infer that this

is equivalent to

4
(
𝑚

2

)2
|𝑆 |2 − 19

(
𝑚

2

)
|𝑆 | + 12 ≤ 0.

It can now be checked that 4
(
𝑚
2
)2 |𝑆 |2−19

(
𝑚
2
)
|𝑆 |+12 = 0 if |𝑆 | = 3

4
(
𝑚
2
)−1 or |𝑆 | = 4

(
𝑚
2
)−1. As a quadratic

function grows from its minimum, this proves our inequality for 3
4
(
𝑚
2
)−1 ≤ |𝑆 | ≤ (3 + 3

4 )
(
𝑚
2
)−1, as

required.
As the second case, suppose that 𝐶 > 3 and thus 𝑘 ≥ 2. In this case, we have that

1 + 2 +
𝑚−3∑︁
𝑖=𝑚−𝑘

(𝑚 − 𝑘) (𝑚 − 𝑘) (𝑚 − 𝑘 + 1)
4

+
(𝐶 − 𝑘 (𝑘+1)

2 ) (𝑚 − (𝑚 − 𝑘 − 1)) (𝑚 − (𝑚 − 𝑘 − 1) + 1)
4

≤ 𝐶𝑆
𝑚−1 +𝐶𝑆

𝑚−2 +
𝑚−3∑︁
𝑖=1

𝐶𝑆
𝑖 (𝑚 − 𝑖) (𝑚 − 𝑖 + 1)

4
.
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Moreover, since 2·2·3
4 + 1·1·2

4 = 7
2 , we can rewrite the left side of this inequality by

𝑚−1∑︁
𝑖=𝑚−𝑘

(𝑚 − 𝑘) (𝑚 − 𝑘) (𝑚 − 𝑘 + 1)
4

+
(𝐶 − 𝑘 (𝑘+1)

2 ) (𝑚 − (𝑚 − 𝑘 − 1)) (𝑚 − (𝑚 − 𝑘 − 1) + 1)
4

− 1
2

=

𝑘∑︁
𝑖=1

𝑖2 (𝑖 + 1)
4

+
(𝐶 − 𝑘 (𝑘+1)

2 ) (𝑘 + 1) (𝑘 + 2)
4

− 1
2

Next, let ℓ = 𝐶 − 𝑘 (𝑘+1)
2 . As noted in the proof of Theorem 2, it holds that

𝑘∑︁
𝑖=1

𝑖2 (𝑖 + 1) + ℓ (𝑘 + 1) (𝑘 + 2)

=
𝑘4

4
+ 5𝑘3

6
+ 3𝑘2

4
+ 𝑘

6
+ ℓ (𝑘 + 1) (𝑘 + 2)

=

(
𝑘4

4
+ 2𝑘3

4
+ 𝑘2

4
+ ℓ𝑘 (𝑘 + 1)) + ℓ (𝑘 + 1)

)
+

(
𝑘3

3
+ 𝑘2

2
+ 𝑘

6
+ ℓ (𝑘 + 1)

)
Now, we first note that ℓ ≤ 𝑘 + 1, so ℓ (𝑘 + 1) ≥ ℓ2. Further, as 𝑘 ≥ 2, it holds that 𝑘3

3 + 𝑘
6 ≥ 𝑘2

2 + 1
and 𝑘2 ≥ 𝑘 (𝑘+1)

2 . Hence, we derive that
𝑘∑︁
𝑖=1

𝑖2 (𝑖 + 1) + ℓ (𝑘 + 1) (𝑘 + 2) ≥
(
𝑘4

4
+ 2𝑘3

4
+ 𝑘2

4
+ ℓ𝑘 (𝑘 + 1)) + ℓ2

)
+

(
𝑘2 + 1 + ℓ (𝑘 + 1)

)
≥

(
𝑘 (𝑘 + 1)

2
+ ℓ

)2
+

(
𝑘 (𝑘 + 1)

2
+ ℓ

)
+ 2

= 𝐶 (𝐶 + 1) + 2.

Substituting this into our original inequality shows that 𝐶 (𝐶+1)
4 ≤ ∑

≻∈R 𝑏
𝑆
𝑖 (≻)𝑢 (≻,▷). Finally,

from here on, we can complete the proof analogously to the proof of Theorem 2. □
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